def test_profile(): ind_set = {'fr':[1,1],'m_cost':0,'energy':1,'rep_cost': 0 ,'lifespan':1,'fecund_genes':[0,.5,2,25],'max_energy':10} tmp = L.Lattice(dims = [5,2],Kp = [.01,.02] ) n_patch = 10 groups = [] for i in range(n_patch): z = [] for x in range(20): indiv_dict = {'forage_rate':np.random.uniform(ind_set["fr"][0],ind_set["fr"][1]),'m_cost':ind_set["m_cost"],'energy':1,'rep_cost':ind_set["rep_cost"],'lifespan':ind_set["lifespan"],'groupID' : 1,'sex' : np.random.binomial(1,.5,1),'fecund_genes':np.random.uniform(ind_set["fecund_genes"][0],ind_set["fecund_genes"][1],(ind_set["fecund_genes"][2],ind_set["fecund_genes"][3])),"max_energy": ind_set["max_energy"]} z.append(Ind.individual(**indiv_dict)) groups.append(G.group(z,i,ID=i)) tmp.groups = groups n = 500 for x in range(n): if x%1 == 0: print x tmp.mate(ind_set) #tmp.disperse(.1,True,24) tmp.colonize(10000,1,.01) tmp.reproduce() tmp.senesce(.05) tmp.mutate(0.001) #tmp.forage() tmp.regenerate() tmp.data_collect() ih.write_ibmdata(tmp) print "done"
ind_set = {'fr':[1,1],'m_cost':0,'energy':1,'rep_cost': 0 ,'lifespan':1,'fecund_genes':[.6,1,2,5],'max_energy':10} tmp = L.Lattice(dims = [2,2],Kp = [.005,.01] ) groups = [] z = [] for x in range(20): indiv_dict = {'forage_rate':np.random.uniform(ind_set["fr"][0],ind_set["fr"][1]),'m_cost':ind_set["m_cost"],'energy':1,'rep_cost':ind_set["rep_cost"],'lifespan':ind_set["lifespan"],'groupID' : 1,'sex' : np.random.binomial(1,.5,1),'fecund_genes':np.random.uniform(ind_set["fecund_genes"][0],ind_set["fecund_genes"][1],(ind_set["fecund_genes"][2],ind_set["fecund_genes"][3])),"max_energy": ind_set["max_energy"]} z.append(Ind.individual(**indiv_dict)) for x in range(4): groups.append(G.group([],x,ID=x)) groups[0] = G.group(z,0,ID=0) tmp.groups = groups n = 100 for x in range(n): if x%1 == 0: print x tmp.mate(ind_set) tmp.disperse(.1)
ind_set = {'fr':[1,1],'m_cost':0,'energy':1,'rep_cost': 0 ,'lifespan':1,'fecund_genes':[0,.2,2,25],'max_energy':10} tmp = L.Lattice(dims = [5,2],Kp = [.01,.02] ) n_patch = 10 groups = [] for i in range(n_patch): z = [] for x in range(20): indiv_dict = {'forage_rate':np.random.uniform(ind_set["fr"][0],ind_set["fr"][1]),'m_cost':ind_set["m_cost"],'energy':1,'rep_cost':ind_set["rep_cost"],'lifespan':ind_set["lifespan"],'groupID' : 1,'sex' : np.random.binomial(1,.5,1),'fecund_genes':np.random.uniform(ind_set["fecund_genes"][0],ind_set["fecund_genes"][1],(ind_set["fecund_genes"][2],ind_set["fecund_genes"][3])),"max_energy": ind_set["max_energy"]} z.append(Ind.individual(**indiv_dict)) groups.append(G.group(z,i,ID=i)) tmp.groups = groups n = 2000 for x in range(n): if x%10 == 0: print x tmp.mate(ind_set) #tmp.disperse(.1,True,24) tmp.colonize(20,.5,.01) tmp.reproduce()
def main(): ''' Description: Runs a full simulation of our spider model. Requires a command line input of a file with parameters. Below is a full description of parameters. They must be named as described, separated by spaces. ngens: The number of generations in the simulation x_dim: The x dimensions of the lattice that we are simulating over. y_dim: The y dimension of the lattice we are simulating over. min_pop: The minimum population size expressed as c in 1/c = pop size, e.g. min_pop = 0.01 means a minimum population size of 100 max_pop: The maximum population size expressed as c in 1/c = pop size, e.g. min_pop = 0.01 means a minimum population size of 100 ''' #extract parameters param_dict = read_args() #Set global parameters x_dim = int(param_dict['x_dim']) y_dim = int(param_dict['y_dim']) min_pop = param_dict['min_pop'] max_pop = param_dict['max_pop'] ngens = int(param_dict['ngens']) min_col_size = int(param_dict['min_col_size']) ind_set = {'fr':[1,1],'m_cost':0,'energy':1,'rep_cost': 0 ,'lifespan':1,'fecund_genes':[0,1,2,20],'max_energy':10} tmp = L.Lattice(dims = [x_dim,y_dim],Kp = [max_pop,min_pop] ) n_patch = x_dim * y_dim groups = [] for i in range(n_patch): z = [] for x in range(20): indiv_dict = {'forage_rate':np.random.uniform(ind_set["fr"][0],ind_set["fr"][1]),'m_cost':ind_set["m_cost"],'energy':1,'rep_cost':ind_set["rep_cost"],'lifespan':ind_set["lifespan"],'groupID' : 1,'sex' : np.random.binomial(1,.5,1),'fecund_genes':np.random.uniform(ind_set["fecund_genes"][0],ind_set["fecund_genes"][1],(ind_set["fecund_genes"][2],ind_set["fecund_genes"][3])),"max_energy": ind_set["max_energy"]} z.append(Ind.individual(**indiv_dict)) groups.append(G.group(z,i,ID=i)) tmp.groups = groups n = ngens for x in range(n): if x%1 == 0: print x tmp.mate(ind_set) #tmp.disperse(.1,True,24) tmp.colonize(min_col_size,.5,.001) tmp.reproduce() tmp.senesce(.05) tmp.mutate(0.001) #tmp.forage() tmp.regenerate() tmp.data_collect() fName = "data/output_min_pop_"+str(min_pop)+"_min_col_size_"+str(min_col_size)+".csv" ih.write_ibmdata(tmp,fName) print "done"