コード例 #1
0
def get_fluxes_and_names(fallback_to_ic3_labels_flux=False):
    flux_models = []
    for obj in dir(fluxes):
        cls = getattr(fluxes, obj)
        if isclass(cls):
            if issubclass(cls, fluxes.CompiledFlux) and \
               cls != fluxes.CompiledFlux:

                # Try to use flux from icecube.weighting.fluxes
                try:
                    flux_model = MIMIC_NEUTRINOFLUX(cls(), obj)
                    flux_model.getFlux(1e4, 14, 0.)

                # Fall back to ic3_labels version
                # (currently necessary for python >=3.8)
                except Exception as e:

                    # try to obtain flux from ic3_labels
                    if fallback_to_ic3_labels_flux:
                        log_warn('Caught error:' + str(e))
                        log_warn(
                            'Falling back to ic3_labels flux {}'.format(obj))
                        cls = getattr(_fluxes, obj)
                        flux_model = MIMIC_NEUTRINOFLUX(cls(), obj)

                    # if not falling back on ic3_labels fluxed: raise error
                    else:
                        raise e

                flux_models.append(flux_model)

    return flux_models, \
        [str(flux_model_i) + 'Weight' for flux_model_i in flux_models]
コード例 #2
0
    def _create_in_array(self,frame):
        
        if self.EnergyRecoName:
            En = np.log10(frame[self.EnergyRecoName].energy)
        elif self.LaputopParamsName:
            En = np.log10(frame[self.LaputopParamsName].s125)
        else:
            log_fatal('One of EnergyRecoName_I3Particle or LaputopParamsName needs to be given')

        ze = np.cos(frame[self.AngularRecoName].dir.zenith)

        hits = frame[self.HitsName]
        unhits = frame[self.UnhitsName]
        excluded = frame[self.ExcludedName]

        #hits_t, hits_q, hits_r = np.array([[signed_log(hit.time_residual),np.log10(hit.charge), log_plus_one(hit.distance)] for hit in hits]).T

        hits_t = signed_log(np.array([hit.time_residual for hit in hits]))
        hits_q = np.log10(np.array([hit.charge for hit in hits]))
        hits_r = log_plus_one(np.array([hit.distance for hit in hits]))
        hits_E = np.ones_like(hits_r)*En
        hits_z = np.ones_like(hits_r)*ze


        #unhits_t, unhits_q, unhits_r = np.array([[signed_log(hit.time_residual),np.log10(hit.charge), log_plus_one(hit.distance)] for hit in unhits]).T
        unhits_t = signed_log(np.array([hit.time_residual for hit in unhits]))
        unhits_q = np.log10(np.array([hit.charge for hit in unhits]))
        unhits_r = log_plus_one(np.array([hit.distance for hit in unhits]))
        unhits_E = np.ones_like(unhits_r)*En
        unhits_z = np.ones_like(unhits_r)*ze

        #excluded_t, excluded_q, excluded_r = np.array([[signed_log(hit.time_residual),np.log10(hit.charge), log_plus_one(hit.distance)] for hit in excluded]).T
        excluded_t = signed_log(np.array([hit.time_residual for hit in excluded]))
        excluded_q = np.log10(np.array([hit.charge for hit in excluded]))
        excluded_r = log_plus_one(np.array([hit.distance for hit in excluded]))
        excluded_E = np.ones_like(excluded_r)*En
        excluded_z = np.ones_like(excluded_r)*ze

        # ready data for entry to 5D  hist
        t = np.concatenate( (hits_t, unhits_t, excluded_t) )
        q = np.concatenate( (hits_q, unhits_q, excluded_q) )
        r = np.concatenate( (hits_r, unhits_r, excluded_r) )
        E = np.concatenate( (hits_E, unhits_E, excluded_E) )
        z = np.concatenate( (hits_z, unhits_z, excluded_z) )
        
        if len(t)!=162 or len(q)!=162 or len(r)!=162:
            print 'N_t %s N_q %s N_r %s'%(len(t),len(q),len(r))
            log_fatal('Total Tanks in Event not 162')
        
        if np.isnan(t).any() or np.isnan(q).any() or np.isnan(r).any():
            print 't',t
            print 'q',q
            print 'r',r
            log_warn('signed_time/logq/logr have nans')

        in_array=np.vstack([E,z,q,t,r]).T

        return in_array
コード例 #3
0
    def __init__(self, particle_type, energy,
                 density=0.9216*(I3Units.g/I3Units.cm3)):

        # initalize variables
        self.a = 0.
        self.b = 0.
        self.emScale = 1.
        self.emScaleSigma = 0.

        # protect against extremely low energies
        # NB: while Equation 4.11 of Leif's Masters' thesis is written in terms
        # of log10, we use the natural log here and divide the energy-scaling
        # coefficients (beta) below by ln(10) to compensate
        self.logE = max(0., np.log(energy))
        self.Lrad = 0.358*(I3Units.g/I3Units.cm3)/density

        self.isElectron = particle_type in [
            dataclasses.I3Particle.ParticleType.EMinus,
            dataclasses.I3Particle.ParticleType.EPlus,
            dataclasses.I3Particle.ParticleType.Brems,
            dataclasses.I3Particle.ParticleType.DeltaE,
            dataclasses.I3Particle.ParticleType.PairProd,
            dataclasses.I3Particle.ParticleType.Gamma,
            # Pi0 decays to 2 gammas and produce EM showers
            dataclasses.I3Particle.ParticleType.Pi0,
            dataclasses.I3Particle.ParticleType.EMinus,
            dataclasses.I3Particle.ParticleType.EMinus,
        ]

        self.isHadron = particle_type in [
            dataclasses.I3Particle.ParticleType.Hadrons,
            dataclasses.I3Particle.ParticleType.Neutron,
            dataclasses.I3Particle.ParticleType.PiPlus,
            dataclasses.I3Particle.ParticleType.PiMinus,
            dataclasses.I3Particle.ParticleType.K0_Long,
            dataclasses.I3Particle.ParticleType.KPlus,
            dataclasses.I3Particle.ParticleType.KMinus,
            dataclasses.I3Particle.ParticleType.PPlus,
            dataclasses.I3Particle.ParticleType.PMinus,
            dataclasses.I3Particle.ParticleType.K0_Short,

            dataclasses.I3Particle.ParticleType.Eta,
            dataclasses.I3Particle.ParticleType.Lambda,
            dataclasses.I3Particle.ParticleType.SigmaPlus,
            dataclasses.I3Particle.ParticleType.Sigma0,
            dataclasses.I3Particle.ParticleType.SigmaMinus,
            dataclasses.I3Particle.ParticleType.Xi0,
            dataclasses.I3Particle.ParticleType.XiMinus,
            dataclasses.I3Particle.ParticleType.OmegaMinus,
            dataclasses.I3Particle.ParticleType.NeutronBar,
            dataclasses.I3Particle.ParticleType.LambdaBar,
            dataclasses.I3Particle.ParticleType.SigmaMinusBar,
            dataclasses.I3Particle.ParticleType.Sigma0Bar,
            dataclasses.I3Particle.ParticleType.SigmaPlusBar,
            dataclasses.I3Particle.ParticleType.Xi0Bar,
            dataclasses.I3Particle.ParticleType.XiPlusBar,
            dataclasses.I3Particle.ParticleType.OmegaPlusBar,
            dataclasses.I3Particle.ParticleType.DPlus,
            dataclasses.I3Particle.ParticleType.DMinus,
            dataclasses.I3Particle.ParticleType.D0,
            dataclasses.I3Particle.ParticleType.D0Bar,
            dataclasses.I3Particle.ParticleType.DsPlus,
            dataclasses.I3Particle.ParticleType.DsMinusBar,
            dataclasses.I3Particle.ParticleType.LambdacPlus,
            dataclasses.I3Particle.ParticleType.WPlus,
            dataclasses.I3Particle.ParticleType.WMinus,
            dataclasses.I3Particle.ParticleType.Z0,
            dataclasses.I3Particle.ParticleType.NuclInt,
        ]

        self.isMuon = particle_type in [
            dataclasses.I3Particle.ParticleType.MuMinus,
            dataclasses.I3Particle.ParticleType.MuPlus,
        ]

        self.isTau = particle_type in [
            dataclasses.I3Particle.ParticleType.TauMinus,
            dataclasses.I3Particle.ParticleType.TauPlus,
        ]

        if ((not self.isHadron) and (not self.isElectron) and (not self.isMuon)
                and (not self.isTau)):
            # if we don't know it but it has a pdg code,
            # it is probably a hadron..
            self.isHadron = True

            # Added safety check: throw error in this case to make sure nothing
            # weird is happenning unkowingly
            # raise ValueError('Unkown particle type {!r}'.format(particle_type))
            log_warn(
                'Unkown particle type {!r}. Assuming this is a hadron!'.format(
                    particle_type)
            )

        if self.isElectron:

            if particle_type == dataclasses.I3Particle.ParticleType.EPlus:
                self.a = 2.00035+0.63190*self.logE
                self.b = self.Lrad/0.63008

            elif particle_type in [
                    dataclasses.I3Particle.ParticleType.Gamma,
                    dataclasses.I3Particle.ParticleType.Pi0,  # gamma, pi0
                    ]:

                self.a = 2.83923+0.58209*self.logE
                self.b = self.Lrad/0.64526

            else:
                self.a = 2.01849+0.63176*self.logE
                self.b = self.Lrad/0.63207

        elif self.isHadron:

            self.E0 = 0.
            self.m = 0.
            self.f0 = 1.
            self.rms0 = 0.
            self.gamma = 0.

            if particle_type == dataclasses.I3Particle.ParticleType.PiMinus:
                self.a = 1.69176636+0.40803489 * self.logE
                self.b = self.Lrad / 0.34108075
                self.E0 = 0.19826506
                self.m = 0.16218006
                self.f0 = 0.31859323
                self.rms0 = 0.94033488
                self.gamma = 1.35070162

            elif particle_type == dataclasses.I3Particle.ParticleType.K0_Long:
                self.a = 1.95948974+0.34934666 * self.logE
                self.b = self.Lrad / 0.34535151
                self.E0 = 0.21687243
                self.m = 0.16861530
                self.f0 = 0.27724987
                self.rms0 = 1.00318874
                self.gamma = 1.37528605

            elif particle_type == dataclasses.I3Particle.ParticleType.PPlus:
                self.a = 1.47495778+0.40450398 * self.logE
                self.b = self.Lrad / 0.35226706
                self.E0 = 0.29579368
                self.m = 0.19373018
                self.f0 = 0.02455403
                self.rms0 = 1.01619344
                self.gamma = 1.45477346

            elif particle_type == dataclasses.I3Particle.ParticleType.Neutron:
                self.a = 1.57739060+0.40631102 * self.logE
                self.b = self.Lrad / 0.35269455
                self.E0 = 0.66725124
                self.m = 0.19263595
                self.f0 = 0.17559033
                self.rms0 = 1.01414337
                self.gamma = 1.45086895

            elif particle_type == dataclasses.I3Particle.ParticleType.PMinus:
                self.a = 1.92249171+0.33701751 * self.logE
                self.b = self.Lrad / 0.34969748
                self.E0 = 0.29579368
                self.m = 0.19373018
                self.f0 = 0.02455403
                self.rms0 = 1.01094637
                self.gamma = 1.50438415

            else:
                self.a = 1.58357292+0.41886807 * self.logE
                self.b = self.Lrad / 0.33833116
                self.E0 = 0.18791678
                self.m = 0.16267529
                self.f0 = 0.30974123
                self.rms0 = 0.95899551
                self.gamma = 1.35589541

            e = max(2.71828183, energy)
            self.emScale = 1. - pow(e/self.E0, -self.m)*(1.-self.f0)
            self.emScaleSigma = \
                self.emScale*self.rms0*pow(np.log(e), -self.gamma)

        else:
            raise ValueError('Particle type {!r} is not a shower'.format(
                                                                particle_type))

        if (energy < 1.*I3Units.GeV):
            self.b = 0.  # this sets the cascade length to 0
コード例 #4
0
    def Physics(self, frame):
        # Load reconstructed quantities
        laputop = frame[self.track]
        coszen = np.cos(laputop.dir.zenith)

        Par = LaputopParameter
        params = I3LaputopParams.from_frame(frame, self.track + 'Params')
        logs125 = params.value(Par.Log10_S125)

        # Locate the Zen/S125 bin to use appropriate 2D PDF
        for zen_high, zen_low in zenith_bins:
            if coszen < zen_high and coszen >= zen_low:
                break
            zen_high = None

        #if not self.highEbins:
        if not self.highE:
            s125_bins = np.array(
                zip(np.arange(-0.5, 1, 0.1), np.arange(-0.4, 1.1, 0.1)))
        else:
            s125_bins = np.array(
                zip(np.arange(-0.5, 2.1, 0.1), np.arange(-0.4, 2.2, 0.1)))

        for s125_low, s125_high in s125_bins:
            if logs125 < s125_high and logs125 >= s125_low:
                break
            s125_high = None

        # See whether Pulse Containers are found in frame
        good_event = self.slcpulses in frame or self.hlcpulses in frame
        if not good_event:
            log_info(
                'Either %s or %s missing in frame. LLH Ratio not being calculated.'
                % (self.slcpulses, self.hlcpulses))

        # Store Nans if event out of S125/Zen bin or Pulse Containers not found
        if s125_high == None or zen_high == None or not good_event:
            dict = {}
            for key in ['q_r', 'q_t', 't_r']:
                dict['LLH_Hadron_%s' % key] = np.nan
                dict['LLH_Gamma_%s' % key] = np.nan
            dict['LLH_Ratio'] = np.nan
            frame.Put(self.objname, dataclasses.I3MapStringDouble(dict))
            self.PushFrame(frame)
            return

        self.llh.events = {}
        event_doms = []

        axis = frame[self.track]
        rotation = to_shower_cs(axis)
        origin = np.array([[axis.pos.x], [axis.pos.y], [axis.pos.z]])
        self.llh.events['laputop_x'] = [
            axis.pos.x
        ]  #len(self.events['laputop_x']) used for a loop later

        for pulsename, tag in [[self.slcpulses, 'slc'],
                               [self.hlcpulses, 'hlc']]:

            if pulsename not in frame:
                log_warn('%s not found in frame' % pulsename)
                continue

            self.llh.events[tag + '_rperp'] = []
            self.llh.events[tag + '_q'] = []
            self.llh.events[tag + '_t'] = []

            pulses = dataclasses.I3RecoPulseSeriesMap.from_frame(
                frame, pulsename)

            for k, m in pulses.iteritems():
                event_doms.append((k[0], k[1], k[2]))
                for i, pulse in enumerate(m):
                    if not k in self.geometry.omgeo:
                        log_fatal("OM {om} not in geometry!".format(om=k))
                        continue
                    position = self.geometry.omgeo[k].position
                    det_cs_position = np.array([[position.x], [position.y],
                                                [position.z]])
                    shower_cs_position = rotation * (det_cs_position - origin)
                    shower_cs_radius = np.sqrt(shower_cs_position[0]**2 +
                                               shower_cs_position[1]**2)
                    time = pulse.time - float(
                        axis.time - shower_cs_position[2] / I3Constants.c)

                    # Correct SLC Time Stamp if SLC Time Correction Pickle has been supplied
                    if self.slc_time_corr != None and pulsename == self.slcpulses:
                        newtime = correct_slc_time(self.mean_slc_charge,
                                                   self.median_time_diff, time,
                                                   pulse.charge)
                        time = newtime

                    self.llh.events[tag + '_rperp'].append(
                        np.log10(np.float(shower_cs_radius)))
                    self.llh.events[tag + '_q'].append(np.log10(pulse.charge))
                    self.llh.events[tag + '_t'].append(np.log10(time))

        nohit_t, nohit_q, nohit_rperp, nohit_om, nohit_string = self.llh.no_hit_doms(
            event_doms, axis.dir.azimuth, axis.dir.zenith, axis.pos.x,
            axis.pos.y)
        self.llh.events['nohit_t'] = nohit_t
        self.llh.events['nohit_q'] = nohit_q
        self.llh.events['nohit_rperp'] = nohit_rperp
        self.llh.events['nohit_om'] = nohit_om
        self.llh.events['nohit_string'] = nohit_string

        # need to convert each list to list of list.
        for key in self.llh.events.keys():
            self.llh.events[key] = [self.llh.events[key]]

        # print('s125_high = {}'.format(s125_high))
        # print('str(s125_high) = {}'.format(str(s125_high)))
        self.llh.calc_llh_values_new(histbins=histbins,
                                     histrange=histrange,
                                     s125=str(s125_high),
                                     zen=str(zen_high),
                                     ignorezerobinsinboth=True,
                                     generatepdf=False,
                                     pdffileinstance=None,
                                     trace_tanks=False)

        dict = {}
        LLHRatio = 0
        for key in ['q_r', 'q_t', 't_r']:
            dict['LLH_Hadron_%s' %
                 key] = self.llh.events['proton_like'][key][0]
            dict['LLH_Gamma_%s' % key] = self.llh.events['gamma_like'][key][0]
            LLHRatio += self.llh.events['proton_like'][key][
                0] - self.llh.events['gamma_like'][key][0]
        dict['LLH_Ratio'] = LLHRatio
        frame.Put(self.objname, dataclasses.I3MapStringDouble(dict))

        # Event arrays need to be cleared out:
        del self.llh.events

        self.PushFrame(frame)
        return
コード例 #5
0
    def Physics(self, frame):

        mese_dict = {
            'n_files': self._n_files,
            'n_events_per_run': self._n_events_per_run,
        }

        # get MC info
        energy_true = frame['MCPrimary'].energy
        zenith_true = frame['MCPrimary'].dir.zenith
        azimuth_true = frame['MCPrimary'].dir.azimuth

        # -------
        # NuGen
        # -------
        if self._dataset_type in ['nugen', 'genie']:
            # get oneweight / n_gen
            oneweight = frame['I3MCWeightDict']['OneWeight'] / self._ngen
            true_type = frame['I3MCWeightDict']['PrimaryNeutrinoType']
            is_tau = (np.abs(true_type) == 16).all()

            # calculate astrophysical weights
            mese_dict['weight_E269'] = 2.09e-18 * oneweight * (energy_true /
                                                               1e5)**-2.69
            mese_dict['weight_E250'] = 2.23e-18 * oneweight * (energy_true /
                                                               1e5)**-2.5

            # calculate atmospheric weights
            if is_tau:
                mese_dict['weight_conv'] = oneweight * atmosphericFlux(
                    neutrinoEnergy=energy_true,
                    neutrinoZenith=zenith_true,
                    neutrinoType=true_type,
                    atmFluxConv=None,
                    atmFluxPrompt=None,
                ) * 2. * self.conv_flux_multiplier

                mese_dict['weight_prompt'] = oneweight * atmosphericFlux(
                    neutrinoEnergy=energy_true,
                    neutrinoZenith=zenith_true,
                    neutrinoType=true_type,
                    atmFluxConv=None,
                    atmFluxPrompt=None,
                ) * 2. * self.prompt_flux_multiplier
            else:
                mese_dict['weight_conv'] = oneweight * atmosphericFlux(
                    neutrinoEnergy=energy_true,
                    neutrinoZenith=zenith_true,
                    neutrinoType=true_type,
                    atmFluxConv=self.honda,
                    atmFluxPrompt=None,
                ) * 2. * self.conv_flux_multiplier
                mese_dict['weight_prompt'] = oneweight * atmosphericFlux(
                    neutrinoEnergy=energy_true,
                    neutrinoZenith=zenith_true,
                    neutrinoType=true_type,
                    atmFluxConv=None,
                    atmFluxPrompt=self.enberg,
                ) * 2. * self.prompt_flux_multiplier

            # ---------------------
            # Atmospheric Self Veto
            # ---------------------
            # get true_depth
            if 'IntersectionPoint' in frame:
                true_depth = frame['IntersectionPoint'].z
            else:
                muon = mu_utils.get_muon_of_inice_neutrino(frame)
                tau = tau_utils.get_tau_of_inice_neutrino(frame)

                if muon is not None:
                    # found a muon
                    entry = self._get_muon_entry(frame, muon)
                    true_depth = entry.z

                elif tau is not None:
                    # found a tau
                    entry = self._get_particle_entry(tau)
                    true_depth = entry.z
                else:

                    # no muon or tau exists: cascade
                    cascade = get_cascade_of_primary_nu(frame,
                                                        frame['MCPrimary'],
                                                        convex_hull=None,
                                                        extend_boundary=800)[0]

                    if cascade is not None:
                        true_depth = cascade.pos.z
                    else:
                        cascade = get_cascade_of_primary_nu(
                            frame,
                            frame['MCPrimary'],
                            convex_hull=None,
                            extend_boundary=float('inf'))[0]

                        # Muon coming out of hadronic shower?
                        daughters = frame['I3MCTree'].get_daughters(cascade)

                        # collect possible muons from daughters of daughters
                        # e.g. Nu -> Nu + Hadrons -> Mu
                        muons = []
                        for d in daughters:
                            muons.extend([
                                m for m in frame['I3MCTree'].get_daughters(d)
                                if mu_utils.is_muon(m)
                            ])
                        if muons:
                            # pick highest energy muon
                            indices = np.argsort([m.energy for m in muons])
                            muon = muons[indices[-1]]
                            entry = self._get_muon_entry(frame, muon)
                            true_depth = entry.z
                        else:
                            true_depth = cascade.pos.z

            # apply self veto
            veto_args = (true_type, energy_true, np.cos(zenith_true),
                         1950. - true_depth)

            if 'IsHese' in frame:
                if frame['IsHese'].value:
                    mese_dict['veto_conv'] = self.honda_veto_hese(*veto_args)
                    mese_dict['veto_prompt'] = self.enberg_veto_hese(
                        *veto_args)
                else:
                    mese_dict['veto_conv'] = self.honda_veto_mese(*veto_args)
                    mese_dict['veto_prompt'] = self.enberg_veto_mese(
                        *veto_args)

            else:
                log_warn('WARNING: IsHese does not exist. Using MESE veto')
                mese_dict['veto_conv'] = self.honda_veto_mese(*veto_args)
                mese_dict['veto_prompt'] = self.honda_veto_mese(*veto_args)

            mese_dict['weight_conv'] *= mese_dict['veto_conv']
            mese_dict['weight_prompt'] *= mese_dict['veto_prompt']
            # ---------------------

        # -------
        # MuonGun
        # -------
        elif self._dataset_type == 'muongun':
            if 'MuonWeight_GaisserH4a' in frame:
                # --- Where does magic number of 1.6 come from? MuonMultiplier
                mese_dict['muon_weight'] = \
                    frame['MuonWeight_GaisserH4a'].value * 1.6 / self._ngen

        # -----------------
        # Experimental Data
        # -----------------
        elif self._dataset_type == 'data':
            mjd = frame['I3EventHeader'].start_time.mod_julian_day_double

        # -----------------------------------------------------
        # final track cut:
        # drop low energy downgoing tracks and duplicate events
        # -----------------------------------------------------
        try:
            # get TrackFit_zenith
            TrackFit_zenith = frame['TrackFit'].dir.zenith

            # get energy_millipede
            energy_millipede = frame['MillipedeDepositedEnergy'].value

            # mask events
            track_mask = data_dict['is_cascade_reco'] | \
                ~((np.cos(TrackFit_zenith) > 0.3) & (energy_millipede < 10e3))

            if self._dataset_type in ['muongun', 'nugen', 'genie']:
                uniq_mask = np.r_[True, np.diff(energy_true) != 0]
            else:
                uniq_mask = np.r_[True, np.diff(mjd) != 0]
            mese_dict['passed_final_track_cut'] = track_mask & uniq_mask
        except Exception as e:
            # log_warn(e)
            pass
        # -----------------------------------------------------
        for k, item in mese_dict.items():
            mese_dict[k] = float(item)
        frame[self._output_key] = dataclasses.I3MapStringDouble(mese_dict)

        self.PushFrame(frame)
コード例 #6
0
ファイル: cascade.py プロジェクト: icecube/ic3-labels
def get_cascade_em_equivalent(mctree, cascade_primary):
    """Get electro-magnetic (EM) equivalent energy of a given cascade.

    Recursively walks through daughters of a provided cascade primary and
    collects EM equivalent energy.
    Note: muons and taus are added completely as EM equivalent energy!
    This disregards the fact that a tau can for instance decay and the neutrino
    may carry away a big portion of energy

    Parameters
    ----------
    mctree : I3MCTree
        The current I3MCTree
    cascade_primary : I3Particle
        The cascade primary particle.

    Returns
    -------
    float
        The total EM equivalent energy of the given cascade.
    float
        The total EM equivalent energy of the EM cascade.
    float
        The total EM equivalent energy of the hadronic cascade.
    float
        The total EM equivalent energy in muons and taus (tracks).
    """

    daughters = mctree.get_daughters(cascade_primary)

    # ---------------------------------
    # stopping conditions for recursion
    # ---------------------------------
    if (cascade_primary.location_type !=
            dataclasses.I3Particle.LocationType.InIce):
        # skip particles that are way outside of the detector volume
        return 0., 0., 0., 0.

    # check if we have a muon or tau
    if cascade_primary.type in [
            dataclasses.I3Particle.ParticleType.MuMinus,
            dataclasses.I3Particle.ParticleType.MuPlus,
            dataclasses.I3Particle.ParticleType.TauMinus,
            dataclasses.I3Particle.ParticleType.TauPlus,
            ]:
        # For simplicity we will assume that all energy is deposited.
        # Note: this is wrong for instance for taus that decay where the
        # neutrino will carry away a large fraction of the energy
        return cascade_primary.energy, 0., 0., cascade_primary.energy

    if len(daughters) == 0:

        if cascade_primary.is_neutrino:
            # skip neutrino: the energy is not visible
            return 0., 0., 0., 0.

        else:

            # get EM equivalent energy
            energy = convert_to_em_equivalent(cascade_primary)

            # EM energy
            if cascade_primary.type in EMTypes:
                return energy, energy, 0., 0.

            # Hadronic energy
            elif cascade_primary.type in HadronTypes:
                return energy, 0., energy, 0.

            else:
                log_warn('Unknown particle type: {}. Assuming hadron!'.format(
                    cascade_primary.type))
                return energy, 0., energy, 0.

    # ---------------------------------

    # collect energy from hadronic, em, and tracks
    energy_total = 0.
    energy_em = 0.
    energy_hadron = 0.
    energy_track = 0.

    # recursively walk through daughters and accumulate energy
    for daugther in daughters:

        # get energy depositions of particle and its daughters
        e_total, e_em, e_hadron, e_track = get_cascade_em_equivalent(
            mctree, daugther)

        # CMC splits up hadronic cascades to segments of electrons
        # In other words: if the cascade primary is a hadron, the daughter
        # particles need to contribute to the hadronic component of the shower
        if cascade_primary.type in HadronTypes:
            e_hadron += e_em
            e_em = 0

        # accumulate energies
        energy_total += e_total
        energy_em += e_em
        energy_hadron += e_hadron
        energy_track += e_track

    return energy_total, energy_em, energy_hadron, energy_track
コード例 #7
0
    def Physics(self, frame):
        # get muon
        muon = mu_utils.get_muon(
            frame=frame,
            primary=frame[self._primary_key],
            convex_hull=self._convex_hull,
        )

        labels = dataclasses.I3MapStringDouble()

        if self._write_vector:
            binned_energy_losses, bin_center_pos = \
                    mu_utils.get_binned_energy_losses_in_cube(
                        frame=frame,
                        muon=muon,
                        bin_width=self._bin_width,
                        boundary=self._boundary,
                        return_bin_centers=self._write_vector
                    )
        else:
            binned_energy_losses = mu_utils.get_binned_energy_losses_in_cube(
                frame=frame,
                muon=muon,
                bin_width=self._bin_width,
                boundary=self._boundary,
                return_bin_centers=self._write_vector)

        # write to frame
        labels['track_anchor_x'] = muon.pos.x
        labels['track_anchor_y'] = muon.pos.y
        labels['track_anchor_z'] = muon.pos.z
        labels['track_anchor_time'] = muon.time
        labels['azimuth'] = muon.dir.azimuth
        labels['zenith'] = muon.dir.zenith

        for i, energy_i in enumerate(binned_energy_losses):

            # stop adding energy losses if we reached the maximum
            if self._max_num_bins is not None:
                if i >= self._max_num_bins:
                    msg = 'MaxNumBinsis set to {}. '.format(self._max_num_bins)
                    msg += 'Cutting off an additional {} losses!'.format(
                        len(binned_energy_losses) - self._max_num_bins)
                    log_warn(msg)
                    break

            labels['EnergyLoss_{:05d}'.format(i)] = energy_i

        # pad rest with NaNs
        if self._max_num_bins is not None:
            for i in range(len(binned_energy_losses), self._max_num_bins):
                labels['EnergyLoss_{:05d}'.format(i)] = float('NaN')

        frame.Put(self._output_key, labels)

        if self._write_vector:
            part_vec = dataclasses.I3VectorI3Particle()
            for energy_i, pos_i in zip(binned_energy_losses, bin_center_pos):
                part = dataclasses.I3Particle()
                part.pos = dataclasses.I3Position(*pos_i)
                part.energy = energy_i
                part.dir = dataclasses.I3Direction(muon.dir)
                part.time = ((muon.pos - part.pos).magnitude /
                             dataclasses.I3Constants.c)
                part_vec.append(part)
            frame.Put(self._output_key + 'ParticleVector', part_vec)

        self.PushFrame(frame)
コード例 #8
0
    def __call__(self, bias_data):
        """Apply Bias Function

        Parameters
        ----------
        bias_data : dict
            Dictionary of bias input data.
            Contents may include:
            {
                'frame': the current I3Frame,
            }

        Returns
        -------
        float
            Keep probability: probability with which this event should be kept.
        """

        frame = bias_data['frame']

        # get primary
        mc_tree = frame[self.mctree_name]
        primaries = mc_tree.get_primaries()
        assert len(primaries) == 1, 'Expected only 1 Primary!'

        # get muon
        muon = mu_utils.get_muon(
            frame,
            primaries[0],
            detector.icecube_hull,
            mctree_name=self.mctree_name,
        )

        if muon is None:

            # if muon did not hit the convex hull, or if no muon exists,
            # it will be None. In this case we set default values
            found_muon = False
            cos_zen = np.cos(primaries[0].dir.zenith)
            track_length = 0.
            max_rel_loss = 0.

        else:
            found_muon = True
            cos_zen = np.cos(muon.dir.zenith)
            track_length = mu_utils.get_muon_track_length_inside(
                muon, detector.icecube_hull)

            # get muon energy losses
            losses = [
                loss for loss in mc_tree.get_daughters(muon)
                if not mu_utils.is_muon(loss) and
                geometry.is_in_detector_bounds(loss.pos, extend_boundary=60)
            ]

            # compute relative energy losses
            rel_losses = []
            loss_energies = []
            for loss in losses:

                # get energy of muon prior to energy loss
                distance = (muon.pos - loss.pos).magnitude
                energy = mu_utils.get_muon_energy_at_distance(
                    frame, muon, np.clip(distance - 1, 0., float('inf')))

                # If the loss is at the muon decay point, the returned energy
                # might be NaN, assert this and set default value of 1 GeV
                if not np.isfinite(energy):
                    assert np.abs(distance - muon.length) < 1, (energy, muon)
                    energy = 1

                rel_loss = loss.energy / energy
                if rel_loss > 1. or rel_loss < 0.:
                    msg = 'Found out of bounds rel_loss: {:3.3f}. '.format(
                        rel_loss)
                    msg += 'Clipping value to [0, 1]'
                    log_warn(msg)
                    rel_loss = np.clip(rel_loss, 0., 1.)

                loss_energies.append(loss.energy)
                rel_losses.append(rel_loss)
            if rel_losses:
                max_rel_loss = rel_losses[np.argmax(loss_energies)]
            else:
                max_rel_loss = 0.

        # bias based on zenith
        if self.cos_zenith_sigmoid_scale is None:
            zenith_keep_prob = 1.0
        else:
            zenith_keep_prob = self.sigmoid(
                -cos_zen,
                s=self.cos_zenith_sigmoid_scale,
                b=self.cos_zenith_sigmoid_bias,
            )

        # bias based on in detector track length
        if self.track_length_sigmoid_scale is None:
            track_length_prob = 1.0
        else:
            track_length_prob = self.sigmoid(
                track_length,
                s=self.track_length_sigmoid_scale,
                b=self.track_length_sigmoid_bias,
            )

        # bias based on maximum relative energy loss
        if self.muon_loss_sigmoid_scale is None:
            max_rel_loss_prob = 1.
        else:
            max_rel_loss_prob = self.sigmoid(
                max_rel_loss,
                s=self.muon_loss_sigmoid_scale,
                b=self.muon_loss_sigmoid_bias,
            )

        bias_info = {
            'found_muon': found_muon,
            'cos_zenith': cos_zen,
            'track_length_in_detector': track_length,
            'max_relative_energy_loss': max_rel_loss,
        }

        keep_prob = zenith_keep_prob * track_length_prob * max_rel_loss_prob
        return keep_prob, bias_info
コード例 #9
0
    def _create_in_array(self, frame, time_transformation=signed_log):
        """
        Create the IceTop specific input array that goes into
        GeneratePDF / CalcLLHR .
        This is method will need to be 
        adapted for each analysis.
        """

        if not self.Use_Laputop:
            En = np.log10(frame[self.EnergyRecoName].energy)
        else:
            En = frame[self.LaputopParamsName].value(
                recclasses.LaputopParameter.Log10_S125)

        ze = np.cos(frame[self.AngularRecoName].dir.zenith)

        hits = frame[self.HitsName]
        unhits = frame[self.UnhitsName]
        excluded = frame[self.ExcludedName]

        hits_t = time_transformation(
            np.array([hit.time_residual for hit in hits]))
        hits_q = np.log10(np.array([hit.charge for hit in hits]))
        hits_qunlog = np.array([hit.charge for hit in hits])
        hits_r = log_plus_one(np.array([hit.distance for hit in hits]))
        hits_E = np.ones_like(hits_r) * En
        hits_z = np.ones_like(hits_r) * ze
        hits_doms = np.array([hit.DOMkey for hit in hits])

        if np.isnan(hits_q).any():
            select = np.isnan(hits_q)
            log_error('nan q doms in %s' % self.HitsName)
            log_error(
                zip(hits_q[select], hits_qunlog[select], hits_doms[select]))

        if np.isnan(hits_t).any():
            select = np.isnan(hits_t)
            log_error('nan t doms in %s' % self.HitsName)
            log_error(zip(hits_t[select], hits_doms[select]))

        unhits_t = time_transformation(
            np.array([hit.time_residual for hit in unhits]))
        unhits_q = np.log10(np.array([hit.charge for hit in unhits]))
        unhits_r = log_plus_one(np.array([hit.distance for hit in unhits]))
        unhits_E = np.ones_like(unhits_r) * En
        unhits_z = np.ones_like(unhits_r) * ze

        excluded_t = time_transformation(
            np.array([hit.time_residual for hit in excluded]))
        excluded_q = np.log10(np.array([hit.charge for hit in excluded]))
        excluded_r = log_plus_one(np.array([hit.distance for hit in excluded]))
        excluded_E = np.ones_like(excluded_r) * En
        excluded_z = np.ones_like(excluded_r) * ze

        # ready data for entry to 5D  hist
        t = np.concatenate((hits_t, unhits_t, excluded_t))
        q = np.concatenate((hits_q, unhits_q, excluded_q))
        r = np.concatenate((hits_r, unhits_r, excluded_r))
        E = np.concatenate((hits_E, unhits_E, excluded_E))
        z = np.concatenate((hits_z, unhits_z, excluded_z))

        if len(t) != 162 or len(q) != 162 or len(r) != 162:
            log_error('N_t %s N_q %s N_r %s' % (len(t), len(q), len(r)))
            log_fatal('Total Tanks in Event not 162')

        if np.isnan(t).any() or np.isnan(q).any() or np.isnan(r).any():
            #print 't',t
            #print 'q',q
            #print 'r',r
            log_warn(
                'signed_time/logq/logr have nans, logs125%.2f coszen%.2f' %
                (En, ze))

        in_array = np.vstack([E, z, q, t, r]).T

        return in_array