コード例 #1
0
def pfaget(f):
    if not 'sig' in f: raise ValueError("feaget without sig for: " + f['fn'])
    fea = ifea.fft(f['sig'],
                   crate=icfg.get('pfa.crate'),
                   wlen=icfg.get('pfa.wlen')).db()
    ifea.cavg(fea, rat=4, inplace=True)
    fea.sel(axis=len(fea.shape) - 1, len=icfg.get('pfa.dim'), inplace=True)
    return fea
コード例 #2
0
ファイル: multiclass.py プロジェクト: kogmatd/db-izfp
def hmmtrn(ftrn,ftst,fea,s,kwargs={}):
    print('hmm start  '+fea+'_'+s)
    chmm=ihmm.trn(flst=ftrn,fea=fea,its=[0],states=3,**kwargs)
    nldtrn=ihmm.evlp(chmm,flst=ftrn,fea=fea)
    nldtst=ihmm.evlp(chmm,flst=ftst,fea=fea)
    if icfg.get('exp')=='triclass' or icfg.get('trn.regression')==True:
        print('hmm finish '+fea+'_'+s)
    else:
        res=np.array(chmm['cls'])[nldtst.argmin(axis=1)]
        icls.cmp(ftst,res,'hmm finish '+fea+'_'+s)
    return (chmm,nldtrn,nldtst)
コード例 #3
0
ファイル: multiclass.py プロジェクト: kogmatd/db-izfp
def dnntrn(ftrn,ftst,fea,s,kwargs={}):
    print('dnn start  '+fea+'_'+s)
    cdnn=idnn.trn(ftrn,ftst,fea=fea,dmod=dmod,**kwargs)
    if cdnn is None:
        print('dnn failed '+fea+'_'+s)
        return (None,None,[])
    else:
        restrn=idnn.evlp(cdnn,ftrn,fea=fea)
        restst=idnn.evlp(cdnn,ftst,fea=fea)
        if icfg.get('exp')=='triclass' or icfg.get('trn.regression')==True:
            print('dnn finish '+fea+'_'+s)
        else:
            res=np.array(cdnn['cls'])[prob.argmax(axis=1)]
            icls.cmp(ftst,res,'dnn finish '+fea+'_'+s)
        return (cdnn,restrn,restst)
コード例 #4
0
ファイル: multiclass.py プロジェクト: kogmatd/db-izfp
def run_sen(s):

    print("flst [%s]"%(s))
    fdb=ifdb.Fdb(s)
    ftrns=ftrn.expandsensor(s,fdb).maplab(labmap)
    ftsts=ftst.expandsensor(s,fdb).maplab(labmap)
    for typ in ['sig','pfa']: fdb.analyse(typ,eval(typ+'get'))
    sfaget(ftrns,ftsts,fdb)
    fdb.save()
    if not regression: ftrns=ftrns.equalcls()
    if '-n' in sys.argv: return

    for cls in clsuse:
        for fea in feause:
            if cls=='hmm' and ftrns[0][fea].shape[-1]>40: continue
            resfn=os.path.join(dlog,'res_'+cls+'_'+fea+'_'+s+'.npy')
            if os.path.exists(resfn): continue
            print('####################',fea,cls,s,'####################')
            kwargs=icfg.get('trnargs.%s.%s'%(cls,fea))
            if kwargs is None:
                if cls=='dnn' or cls[:3]=='cnn': continue
                kwargs={}
            else:
                print('trnargs = '+kwargs)
                kwargs=eval(kwargs)
            kwargs['regression']=regression
            fnctrn=eval(cls[:3]+'trn')
            for i in range(3):
                (mod,restrn,restst)=fnctrn(ftrns,ftsts,fea,s,kwargs)
                if len(restst)>0:
                    np.save(resfn,restst)
                    np.save(resfn[:-4]+'_trn.npy',restrn)
                    eval('i'+cls[:3]+'.save')(mod,resfn[:-4]+'.model')
                    break
コード例 #5
0
ファイル: multiclass.py プロジェクト: kogmatd/db-izfp
def dnntest(s,fea='sfa',**kwargs):
    fdb=ifdb.load(s)
    ftrns=ftrn.expandsensor(s,fdb).maplab(labmap)
    ftsts=ftst.expandsensor(s,fdb).maplab(labmap)
    if icfg.get('trn.regression')!=True: ftrns=ftrns.equalcls()
    cdnn=idnn.trn(ftrns,ftsts,fea=fea,dmod=dmod,verbose=True,**kwargs)
    if not cdnn is None: cdnn['idim']=ftrns[0][fea].shape
    return cdnn
コード例 #6
0
def plot_roc(ftst, nld):
    okpat = 'Z00'
    if icfg.get('db') == 'izfp/cfk': okpat = 'Z0[0-2]'
    detect = (
        nld[:,
            np.array([not re.match(okpat, f['lab']) is None
                      for f in ftst])].mean(axis=0),
        nld[:, np.array([re.match(okpat, f['lab']) is None
                         for f in ftst])].mean(axis=0),
    )
    dres = []
    for v in sorted([*detect[0], *detect[1]]):
        dres.append({
            'x': v,
            'tp': np.sum(detect[0] > v),
            'fp': np.sum(detect[1] > v),
            'fn': np.sum(detect[0] <= v),
            'tn': np.sum(detect[1] <= v),
        })
    for r in dres:
        r['facc'] = r['fp'] / (r['fp'] + r['tn'])
        r['frej'] = r['fn'] / (r['fn'] + r['tp'])
    dpl = sorted([[r['facc'], r['frej']] for r in dres],
                 key=lambda a: a[0] * 100 + (1 - a[1]))
コード例 #7
0
def sigget(f):
    dsig = icfg.getdir('sig')
    sigext = '.' + icfg.get('sig.ext', 'wav')
    sig = isig.load(os.path.join(dsig, f['fn'] + sigext)).rmaxis()
    sig.inc = [1 / icfg.get('sig.srate')]
    return sig
コード例 #8
0
if len(sys.argv) < 2:
    raise ValueError("Usage: " + sys.argv[0] + " (CFG prob_*.npy | csv)")
if sys.argv[1] == 'csv':
    for cfgi in range(1, 4):
        cfg = '../cfk/X%i/info/default.cfg' % cfgi
        os.system(str.join(' ', ['python3', sys.argv[0], cfg, 'csv']))
    raise SystemExit()
icfg.Cfg(sys.argv[1])
ocsv = len(sys.argv) > 2 and sys.argv[2] == 'csv'
if ocsv: sys.argv.remove('csv')

ftst = icfg.readflst('test')
ftrn = icfg.readflst('train')
dlog = icfg.getdir('log')
sen = getsensors()
regression = icfg.get('trn.regression') == True

labmap = {}
if icfg.get('db') == 'izfp/cfk': labmap = {'Z0[0-2]': 'Z00'}
ftst.maplab(labmap)
lcls = np.array(icls.getcls(ftst))

if regression:
    icls.labf(ftst)
    lab = np.array([f['labf'] for f in ftst])
    lfcls = [i[-1] for i in rle(sorted(lab))]

resh = {}
for fn in argv2resfns('res_', sys.argv[2:]):
    if fn.find('_trn.npy') >= 0 or fn.find('.model') >= 0: continue
    cls, fea, s = os.path.basename(fn)[4:-4].split('_')
コード例 #9
0
ファイル: multiclass.py プロジェクト: kogmatd/db-izfp
    np.save(dlog+'/dnnrnd/dnnrnd_'+str(int(time.time()))+'_par.npy',xpar)
    if len(stat)==3: np.save(dlog+'/dnnrnd/dnnrnd_'+str(int(time.time()))+'_stat.npy',stat)

def dnnrndloop():
    while not os.path.exists('stop'): dnnrnd()

if len(sys.argv)<2: raise ValueError("Usage: "+sys.argv[0]+" CFG [-n]")
icfg.Cfg(*sys.argv[1:])

ftrn=icfg.readflst('train')
ftst=icfg.readflst('test')

dmod=icfg.getdir('model')
dlog=icfg.getdir('log')
sen=getsensors()
regression=icfg.get('trn.regression')==True

senuse=sen
feause=['pfa','sfa','sig']
clsuse=['hmm','svm','cnnb','cnn','dnn']
if not icfg.get('senuse') is None: senuse=icfg.get('senuse').split(',')
if not icfg.get('feause') is None: feause=icfg.get('feause').split(',')
if not icfg.get('clsuse') is None: clsuse=icfg.get('clsuse').split(',')

labmap={}
if icfg.get('db')=='izfp/cfk': labmap={'Z0[0-2]':'Z00'}

maxjob=18

if '-nn' in sys.argv: raise SystemExit()
コード例 #10
0
ファイル: oneclass_ubm.py プロジェクト: kogmatd/db-izfp
def prtres(prob, flst):
    eer, cm = icls.eer(
        prob,
        flst=flst,
        okpat='Z0[0-2]' if icfg.get('db') == 'izfp/cfk' else 'Z00')
    return 'EER: %6.2f%% CM: %6.2f%%' % (eer * 100, cm * 100)
コード例 #11
0
ファイル: oneclass_ubm.py プロジェクト: kogmatd/db-izfp

if len(sys.argv) < 2: raise ValueError("Usage: " + sys.argv[0] + " CFG [-n]")
icfg.Cfg(*sys.argv[1:])

if '-nn' in sys.argv: raise SystemExit()

print("flst")
ftrn = icfg.readflst('train')
ftst = icfg.readflst('test')
#fdev=[] if icfg.get('flist.dev') is None else icfg.readflst('dev')

dmod = icfg.getdir('model')
dlog = icfg.getdir('log')
dsig = icfg.getdir('sig')
sigext = '.' + icfg.get('sig.ext', 'wav')
sen = getsensors()

senuse = sen
feause = ['pfa', 'sfa', 'sig']
clsuse = ['hmm', 'svm']
if not icfg.get('senuse') is None: senuse = icfg.get('senuse').split(',')
if not icfg.get('feause') is None: feause = icfg.get('feause').split(',')
if not icfg.get('clsuse') is None: clsuse = icfg.get('clsuse').split(',')

maxjobs = 16

# Generate ftrns & ftsts for universal background model
ftrns = {}
for strn in senuse:
    ftrns[strn] = []
コード例 #12
0
dlog = icfg.getdir('log')

fns = argv2resfns('prob_', fns)

out = []
for fn in sorted(fns):
    prob = np.load(fn)
    msg = ''
    if fn[-8:] == '_old.npy': continue
    if fn.find('_hmm_') >= 0 and prob.shape[-1] == 3:
        if np.sum(prob.take(2, -1) != prob.take(2, -1)[0]) == 0:
            msg = ' ERR in hmm[1]'
        prob = hmmprob(prob.take([1, 2], -1))
        #prob=prob.take(0,-1)

    okpat = 'Z0[0-2]' if icfg.get('db') == 'izfp/cfk' else 'Z00'
    #okpat='Z0[01]'
    eer, cm = icls.eer(prob, flst=ftst, okpat=okpat)

    #ref=[not re.match(okpat,f['lab']) is None for f in ftst]
    #msg+=' [%.2f<=>%.2f]'%(np.mean(prob.mean(axis=0)[ref]),np.mean(prob.mean(axis=0)[np.array(ref)==False]))
    if np.max(prob.mean(0)) < 0.4:
        msg += ' ERR low max %.2f' % (np.max(prob.mean(0)))
    if np.min(prob.mean(0)) > 0.6:
        msg += ' ERR high min %.2f' % (np.min(prob.mean(0)))

    if ocsv:
        (cls, fea) = os.path.basename(fn)[5:-4].split('_')
        out.append(
            '"%s" "%s" "%s" %s %s "%s"' %
            (icfg.get('db').split('/')[-1] + '/' + icfg.get('exp'), fea, cls,