コード例 #1
0
ファイル: icp_test.py プロジェクト: IAMAl/vid2depth_tf2
 def _run_icp(self, cloud_source, ego_motion, cloud_target):
   transform, residual = icp(cloud_source, ego_motion, cloud_target)
   logging.info('Running ICP:')
   logging.info('ego_motion: %s\n%s', ego_motion, ego_motion.eval())
   logging.info('transform: %s\n%s', transform, transform.eval())
   logging.info('residual: %s\n%s', residual,
                residual[0, :PRINT_CAP, :].eval())
   return transform, residual
コード例 #2
0
ファイル: icp_test.py プロジェクト: ALISCIFP/models
 def _run_icp(self, cloud_source, ego_motion, cloud_target):
   transform, residual = icp(cloud_source, ego_motion, cloud_target)
   logging.info('Running ICP:')
   logging.info('ego_motion: %s\n%s', ego_motion, ego_motion.eval())
   logging.info('transform: %s\n%s', transform, transform.eval())
   logging.info('residual: %s\n%s', residual,
                residual[0, :PRINT_CAP, :].eval())
   return transform, residual
コード例 #3
0
ファイル: icp_train_demo.py プロジェクト: ALISCIFP/models
def inference(source, target):
  """Builds model."""
  ego_motion = tf.Variable(tf.zeros([6]), name='ego_motion')
  res_height = tf.Variable(tf.fill([1], 0.0), name='res_height')
  tf.summary.scalar('tx', ego_motion[0])
  tf.summary.scalar('ty', ego_motion[1])
  tf.summary.scalar('tz', ego_motion[2])
  tf.summary.scalar('rx', ego_motion[3])
  tf.summary.scalar('ry', ego_motion[4])
  tf.summary.scalar('rz', ego_motion[5])
  tf.summary.scalar('res_height', res_height[0])

  dist_to_center = tf.norm((source - RES_CENTER)[:, :, :2], axis=2,
                           keep_dims=True)
  res = tf.maximum(RES_RADIUS - dist_to_center, 0.0) / RES_RADIUS
  res *= res_height
  res = tf.concat([tf.zeros_like(res), tf.zeros_like(res), res], axis=2)

  shifted_source = source + res
  ego_motion = tf.stack([ego_motion] * FLAGS.batch_size)
  transform, residual = icp(shifted_source, ego_motion, target)
  return transform, residual
コード例 #4
0
def inference(source, target):
  """Builds model."""
  ego_motion = tf.Variable(tf.zeros([6]), name='ego_motion')
  res_height = tf.Variable(tf.fill([1], 0.0), name='res_height')
  tf.summary.scalar('tx', ego_motion[0])
  tf.summary.scalar('ty', ego_motion[1])
  tf.summary.scalar('tz', ego_motion[2])
  tf.summary.scalar('rx', ego_motion[3])
  tf.summary.scalar('ry', ego_motion[4])
  tf.summary.scalar('rz', ego_motion[5])
  tf.summary.scalar('res_height', res_height[0])

  dist_to_center = tf.norm((source - RES_CENTER)[:, :, :2], axis=2,
                           keep_dims=True)
  res = tf.maximum(RES_RADIUS - dist_to_center, 0.0) / RES_RADIUS
  res *= res_height
  res = tf.concat([tf.zeros_like(res), tf.zeros_like(res), res], axis=2)

  shifted_source = source + res
  ego_motion = tf.stack([ego_motion] * FLAGS.batch_size)
  transform, residual = icp(shifted_source, ego_motion, target)
  return transform, residual