def test_ManageData_ReadAndDump(self): md_dump = ManageData(dump_file=self.file_name) md_dump.PushData(data=np.random.rand(10), key='paperino') md_dump.PushData(data='pippo, pluto', key='pappo') md_dump.Dump() del md_dump md_read = ManageData(dump_file=self.file_name) md_read.Read() os.rename(self.file_name, self.file_name_mv) md_read.Dump() del md_read file_cmp = filecmp.cmp(self.file_name, self.file_name_mv) os.remove(self.file_name) os.remove(self.file_name_mv) self.assertTrue(file_cmp)
def test_ManageData_Dump(self): md_dump = ManageData(dump_file=self.file_name) md_dump.PushData(data=np.random.rand(10), key='paperino') md_dump.PushData(data='pippo, pluto', key='pappo') chars_n = md_dump.Dump() del md_dump os.remove(self.file_name) self.assertTrue(True)
def test_ManageData_Read(self): md_dump = ManageData(dump_file=self.file_name) md_dump.PushData(data=np.random.rand(10), key='paperino') md_dump.PushData(data='pippo, pluto', key='pappo') md_dump.Dump() del md_dump md_read = ManageData(dump_file=self.file_name) read_flag = md_read.Read() del md_read os.remove(self.file_name) self.assertTrue(read_flag)
kde_iso = KernelDensity(bandwidth=0.25, kernel='gaussian') kde_iso.fit(np.log(norm_2iso_histo)[:, None]) logprob_iso_E12[G] = kde_iso.score_samples(u_bins_iso_E12[G][:, None]) kde_niso = KernelDensity(bandwidth=0.25, kernel='gaussian') kde_niso.fit(np.log(norm_2niso_histo)[:, None]) logprob_niso_E12[G] = kde_niso.score_samples(u_bins_niso_E12[G][:, None]) MDH.PushData(data=u_bins_iso_E12, key='u_bins_iso' + 'E12') MDH.PushData(data=u_bins_niso_E12, key='u_bins_niso' + 'E12') MDH.PushData(data=logprob_iso_E12, key='logprob_iso' + 'E12') MDH.PushData(data=logprob_niso_E12, key='logprob_niso' + 'E12') MDH.Dump() else: u_bins_iso_E6 = MDH.PullData('u_bins_iso' + 'E6') u_bins_niso_E6 = MDH.PullData('u_bins_niso' + 'E6') logprob_iso_E6 = MDH.PullData('logprob_iso' + 'E6') logprob_niso_E6 = MDH.PullData('logprob_niso' + 'E6') u_bins_iso_E8 = MDH.PullData('u_bins_iso' + 'E8') u_bins_niso_E8 = MDH.PullData('u_bins_niso' + 'E8') logprob_iso_E8 = MDH.PullData('logprob_iso' + 'E8') logprob_niso_E8 = MDH.PullData('logprob_niso' + 'E8') u_bins_iso_E10 = MDH.PullData('u_bins_iso' + 'E10') u_bins_niso_E10 = MDH.PullData('u_bins_niso' + 'E10') logprob_iso_E10 = MDH.PullData('logprob_iso' + 'E10') logprob_niso_E10 = MDH.PullData('logprob_niso' + 'E10')
_u_profiles[_bin_i, _r] = np.sqrt(((UX_spl(_x_cut, _y_cut)) ** 2 + (UY_spl(_x_cut, _y_cut)) ** 2)/c2) _bin_i += 1 _u_profile_ave[_str] = np.zeros(_r_range.shape[0]) _u_profile_err[_str] = np.zeros(_r_range.shape[0]) for _r in _r_range: _u_profile_ave[_str][_r] = np.mean(_u_profiles[:, _r]) _u_profile_err[_str][_r] = np.sqrt(np.var(_u_profiles[:, _r])/(_n_bins - 1)) AveU.PushData(data = _u_profile_ave, key = '_u_profile_ave') AveU.PushData(data = _u_profile_err, key = '_u_profile_err') AveU.PushData(data = L, key = 'L') AveU.Dump() else: _u_profile_ave = AveU.PullData('_u_profile_ave') _u_profile_err = AveU.PullData('_u_profile_err') L = AveU.PullData('L') _r_range = np.arange(0, L//2, 1) ''' Plotting ''' from matplotlib import rc, rcParams import matplotlib import matplotlib.pyplot as plt rc('font',**{'family':'STIXGeneral'}) rc('mathtext', **{'fontset': 'stix'}) rc('text', usetex=True)