コード例 #1
0
def test_lagged_mi():
    """Test estimation of lagged MI."""
    n = 10000
    cov = 0.4
    source = [rn.normalvariate(0, 1) for r in range(n)]
    target = [0] + [sum(pair) for pair in zip(
                        [cov * y for y in source[0:n - 1]],
                        [(1 - cov) * y for y in
                            [rn.normalvariate(0, 1) for r in range(n - 1)]])]
    source = np.array(source)
    target = np.array(target)
    settings = {
        'discretise_method': 'equal',
        'n_discrete_bins': 4,
        'history': 1,
        'history_target': 1,
        'lag_mi': 1,
        'source_target_delay': 1}

    est_te_k = JidtKraskovTE(settings)
    te_k = est_te_k.estimate(source, target)
    est_te_d = JidtDiscreteTE(settings)
    te_d = est_te_d.estimate(source, target)
    est_d = JidtDiscreteMI(settings)
    mi_d = est_d.estimate(source, target)
    est_k = JidtKraskovMI(settings)
    mi_k = est_k.estimate(source, target)
    est_g = JidtGaussianMI(settings)
    mi_g = est_g.estimate(source, target)
    _compare_result(mi_d, te_d, 'JidtDiscreteMI', 'JidtDiscreteTE',
                    'lagged MI', tol=0.05)
    _compare_result(mi_k, te_k, 'JidtKraskovMI', 'JidtKraskovTE',
                    'lagged MI', tol=0.05)
    _compare_result(mi_g, te_k, 'JidtGaussianMI', 'JidtKraskovTE',
                    'lagged MI', tol=0.05)
コード例 #2
0
def test_one_two_dim_input_discrete():
    """Test one- and two-dimensional input for discrete estimators."""
    expected_mi, src_one, s, target_one = _get_gauss_data(expand=False,
                                                          seed=SEED)
    src_two = np.expand_dims(src_one, axis=1)
    target_two = np.expand_dims(target_one, axis=1)
    ar_src_one, s = _get_ar_data(expand=False, seed=SEED)
    ar_src_two = np.expand_dims(ar_src_one, axis=1)

    settings = {
        'discretise_method': 'equal',
        'n_discrete_bins': 4,
        'history_target': 1,
        'history': 2
    }
    # MI
    mi_estimator = JidtDiscreteMI(settings=settings)
    mi_cor_one = mi_estimator.estimate(src_one, target_one)
    _assert_result(mi_cor_one, expected_mi, 'JidtDiscreteMI', 'MI',
                   0.08)  # More variability here
    mi_cor_two = mi_estimator.estimate(src_two, target_two)
    _assert_result(mi_cor_two, expected_mi, 'JidtDiscreteMI', 'MI',
                   0.08)  # More variability here
    _compare_result(mi_cor_one, mi_cor_two, 'JidtDiscreteMI one dim',
                    'JidtDiscreteMI two dim', 'MI')
    # CMI
    cmi_estimator = JidtDiscreteCMI(settings=settings)
    mi_cor_one = cmi_estimator.estimate(src_one, target_one)
    _assert_result(mi_cor_one, expected_mi, 'JidtDiscreteCMI', 'CMI',
                   0.08)  # More variability here
    mi_cor_two = cmi_estimator.estimate(src_two, target_two)
    _assert_result(mi_cor_two, expected_mi, 'JidtDiscreteCMI', 'CMI',
                   0.08)  # More variability here
    _compare_result(mi_cor_one, mi_cor_two, 'JidtDiscreteMI one dim',
                    'JidtDiscreteMI two dim', 'CMI')
    # TE
    te_estimator = JidtDiscreteTE(settings=settings)
    mi_cor_one = te_estimator.estimate(src_one[1:], target_one[:-1])
    _assert_result(mi_cor_one, expected_mi, 'JidtDiscreteTE', 'TE',
                   0.08)  # More variability here
    mi_cor_two = te_estimator.estimate(src_one[1:], target_one[:-1])
    _assert_result(mi_cor_two, expected_mi, 'JidtDiscreteTE', 'TE',
                   0.08)  # More variability here
    _compare_result(mi_cor_one, mi_cor_two, 'JidtDiscreteMI one dim',
                    'JidtDiscreteMI two dim', 'TE')
    # AIS
    ais_estimator = JidtDiscreteAIS(settings=settings)
    mi_cor_one = ais_estimator.estimate(ar_src_one)
    mi_cor_two = ais_estimator.estimate(ar_src_two)
    _compare_result(mi_cor_one, mi_cor_two, 'JidtDiscreteAIS one dim',
                    'JidtDiscreteAIS two dim', 'AIS (AR process)')
コード例 #3
0
def test_lagged_mi():
    """Test estimation of lagged MI."""
    n = 10000
    cov = 0.4
    source = [rn.normalvariate(0, 1) for r in range(n)]
    target = [0] + [
        sum(pair) for pair in zip([cov * y for y in source[0:n - 1]], [
            (1 - cov) * y
            for y in [rn.normalvariate(0, 1) for r in range(n - 1)]
        ])
    ]
    source = np.array(source)
    target = np.array(target)
    settings = {
        'discretise_method': 'equal',
        'n_discrete_bins': 4,
        'history': 1,
        'history_target': 1,
        'lag_mi': 1,
        'source_target_delay': 1
    }

    est_te_k = JidtKraskovTE(settings)
    te_k = est_te_k.estimate(source, target)
    est_te_d = JidtDiscreteTE(settings)
    te_d = est_te_d.estimate(source, target)
    est_d = JidtDiscreteMI(settings)
    mi_d = est_d.estimate(source, target)
    est_k = JidtKraskovMI(settings)
    mi_k = est_k.estimate(source, target)
    est_g = JidtGaussianMI(settings)
    mi_g = est_g.estimate(source, target)
    _compare_result(mi_d,
                    te_d,
                    'JidtDiscreteMI',
                    'JidtDiscreteTE',
                    'lagged MI',
                    tol=0.05)
    _compare_result(mi_k,
                    te_k,
                    'JidtKraskovMI',
                    'JidtKraskovTE',
                    'lagged MI',
                    tol=0.05)
    _compare_result(mi_g,
                    te_k,
                    'JidtGaussianMI',
                    'JidtKraskovTE',
                    'lagged MI',
                    tol=0.05)
コード例 #4
0
def test_mi_gauss_data():
    """Test MI estimators on correlated Gauss data.

    Note that the calculation is based on a random variable (because the
    generated data is a set of random variables) - the result will be of the
    order of what we expect, but not exactly equal to it; in fact, there will
    be a large variance around it.
    """
    expected_mi, source1, source2, target = _get_gauss_data()

    # Test Kraskov
    mi_estimator = JidtKraskovMI(settings={})
    mi_cor = mi_estimator.estimate(source1, target)
    mi_uncor = mi_estimator.estimate(source2, target)
    _assert_result(mi_cor, expected_mi, 'JidtKraskovMI', 'CMI (no cond.)')
    _assert_result(mi_uncor, 0, 'JidtKraskovMI', 'CMI (uncorr., no cond.)')

    # Test Gaussian
    mi_estimator = JidtGaussianMI(settings={})
    mi_cor = mi_estimator.estimate(source1, target)
    mi_uncor = mi_estimator.estimate(source2, target)
    _assert_result(mi_cor, expected_mi, 'JidtGaussianMI', 'CMI (no cond.)')
    _assert_result(mi_uncor, 0, 'JidtGaussianMI', 'CMI (uncorr., no cond.)')

    # Test Discrete
    settings = {'discretise_method': 'equal', 'n_discrete_bins': 5}
    mi_estimator = JidtDiscreteMI(settings=settings)
    mi_cor = mi_estimator.estimate(source1, target)
    mi_uncor = mi_estimator.estimate(source2, target)
    _assert_result(mi_cor, expected_mi, 'JidtDiscreteMI', 'CMI (no cond.)',
                   0.08)  # More variability here
    _assert_result(mi_uncor, 0, 'JidtDiscreteMI', 'CMI (uncorr., no cond.)',
                   0.08)  # More variability here
コード例 #5
0
def test_discrete_mi_memerror():
    """Test exception handling for memory exhausted exceptions."""
    var1, var2 = _get_mem_binary_data()

    # Check that we catch instantiation error for an enormous history:
    caughtException = False
    settings = {
        'n_discrete_bins': 1000000000
    }
    result = -1
    try:
        mi_estimator = JidtDiscreteMI(settings=settings)
        result = mi_estimator.estimate(var1, var2)
        print('Result of MI calc (which should not have completed) was ',
              result)
    except ex.JidtOutOfMemoryError:
        caughtException = True
        print('ex.JidtOutOfMemoryError caught as required')
    assert caughtException, 'No exception instantiating MI calculator with 10^18 bins'
    # Check that we instantiate correctly for a small history, even after
    #  the error encountered above:
    caughtException = False
    settings = {'n_discrete_bins': 2}
    try:
        mi_estimator = JidtDiscreteMI(settings=settings)
        mi_estimator.estimate(var1, var2)
        print('Subsequent JIDT calculation worked OK')
    except ex.JidtOutOfMemoryError:
        caughtException = True
    assert not (
        caughtException), 'Unable to instantiate MI calculator with 2 bins'
コード例 #6
0
def test_one_two_dim_input_discrete():
    """Test one- and two-dimensional input for discrete estimators."""
    expected_mi, src_one, s, target_one = _get_gauss_data(expand=False)
    src_two = np.expand_dims(src_one, axis=1)
    target_two = np.expand_dims(target_one, axis=1)
    ar_src_one, s = _get_ar_data(expand=False)
    ar_src_two = np.expand_dims(ar_src_one, axis=1)

    settings = {'discretise_method': 'equal',
                'n_discrete_bins': 4,
                'history_target': 1,
                'history': 2}
    # MI
    mi_estimator = JidtDiscreteMI(settings=settings)
    mi_cor_one = mi_estimator.estimate(src_one, target_one)
    _assert_result(mi_cor_one, expected_mi, 'JidtDiscreteMI', 'MI')
    mi_cor_two = mi_estimator.estimate(src_two, target_two)
    _assert_result(mi_cor_two, expected_mi, 'JidtDiscreteMI', 'MI')
    _compare_result(mi_cor_one, mi_cor_two,
                    'JidtDiscreteMI one dim', 'JidtDiscreteMI two dim', 'MI')
    # CMI
    cmi_estimator = JidtDiscreteCMI(settings=settings)
    mi_cor_one = cmi_estimator.estimate(src_one, target_one)
    _assert_result(mi_cor_one, expected_mi, 'JidtDiscreteCMI', 'CMI')
    mi_cor_two = cmi_estimator.estimate(src_two, target_two)
    _assert_result(mi_cor_two, expected_mi, 'JidtDiscreteCMI', 'CMI')
    _compare_result(mi_cor_one, mi_cor_two,
                    'JidtDiscreteMI one dim', 'JidtDiscreteMI two dim', 'CMI')
    # TE
    te_estimator = JidtDiscreteTE(settings=settings)
    mi_cor_one = te_estimator.estimate(src_one[1:], target_one[:-1])
    _assert_result(mi_cor_one, expected_mi, 'JidtDiscreteTE', 'TE')
    mi_cor_two = te_estimator.estimate(src_one[1:], target_one[:-1])
    _assert_result(mi_cor_two, expected_mi, 'JidtDiscreteTE', 'TE')
    _compare_result(mi_cor_one, mi_cor_two,
                    'JidtDiscreteMI one dim', 'JidtDiscreteMI two dim', 'TE')
    # AIS
    ais_estimator = JidtDiscreteAIS(settings=settings)
    mi_cor_one = ais_estimator.estimate(ar_src_one)
    mi_cor_two = ais_estimator.estimate(ar_src_two)
    _compare_result(mi_cor_one, mi_cor_two,
                    'JidtDiscreteAIS one dim', 'JidtDiscreteAIS two dim',
                    'AIS (AR process)')
コード例 #7
0
def test_invalid_settings_input():
    """Test handling of wrong inputs for settings dictionary."""

    # Wrong input type for settings dict.
    with pytest.raises(TypeError):
        JidtDiscreteMI(settings=1)
    with pytest.raises(TypeError):
        JidtDiscreteCMI(settings=1)
    with pytest.raises(TypeError):
        JidtDiscreteAIS(settings=1)
    with pytest.raises(TypeError):
        JidtDiscreteTE(settings=1)
    with pytest.raises(TypeError):
        JidtGaussianMI(settings=1)
    with pytest.raises(TypeError):
        JidtGaussianCMI(settings=1)
    with pytest.raises(TypeError):
        JidtGaussianAIS(settings=1)
    with pytest.raises(TypeError):
        JidtGaussianTE(settings=1)
    with pytest.raises(TypeError):
        JidtKraskovMI(settings=1)
    with pytest.raises(TypeError):
        JidtKraskovCMI(settings=1)
    with pytest.raises(TypeError):
        JidtKraskovAIS(settings=1)
    with pytest.raises(TypeError):
        JidtKraskovTE(settings=1)

    # Test if settings dict is initialised correctly.
    e = JidtDiscreteMI()
    assert type(
        e.settings) is dict, 'Did not initialise settings as dictionary.'
    e = JidtDiscreteCMI()
    assert type(
        e.settings) is dict, 'Did not initialise settings as dictionary.'
    e = JidtGaussianMI()
    assert type(
        e.settings) is dict, 'Did not initialise settings as dictionary.'
    e = JidtGaussianCMI()
    assert type(
        e.settings) is dict, 'Did not initialise settings as dictionary.'
    e = JidtKraskovMI()
    assert type(
        e.settings) is dict, 'Did not initialise settings as dictionary.'
    e = JidtKraskovCMI()
    assert type(
        e.settings) is dict, 'Did not initialise settings as dictionary.'

    # History parameter missing for AIS and TE estimation.
    with pytest.raises(RuntimeError):
        JidtDiscreteAIS(settings={})
    with pytest.raises(RuntimeError):
        JidtDiscreteTE(settings={})
    with pytest.raises(RuntimeError):
        JidtGaussianAIS(settings={})
    with pytest.raises(RuntimeError):
        JidtGaussianTE(settings={})
    with pytest.raises(RuntimeError):
        JidtKraskovAIS(settings={})
    with pytest.raises(RuntimeError):
        JidtKraskovTE(settings={})
コード例 #8
0
def test_local_values():
    """Test estimation of local values and their return type."""
    expected_mi, source, s, target = _get_gauss_data(expand=False)
    ar_proc, s = _get_ar_data(expand=False)

    settings = {
        'discretise_method': 'equal',
        'n_discrete_bins': 4,
        'history_target': 1,
        'history': 2,
        'local_values': True
    }

    # MI - Discrete
    mi_estimator = JidtDiscreteMI(settings=settings)
    mi = mi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtDiscreteMI', 'MI',
                   0.08)  # More variability here
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # MI - Gaussian
    mi_estimator = JidtGaussianMI(settings=settings)
    mi = mi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtGaussianMI', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # MI - Kraskov
    mi_estimator = JidtKraskovMI(settings=settings)
    mi = mi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtKraskovMI', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # CMI - Discrete
    cmi_estimator = JidtDiscreteCMI(settings=settings)
    mi = cmi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtDiscreteCMI', 'CMI',
                   0.08)  # More variability here
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # MI - Gaussian
    mi_estimator = JidtGaussianCMI(settings=settings)
    mi = mi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtGaussianCMI', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # MI - Kraskov
    mi_estimator = JidtKraskovCMI(settings=settings)
    mi = mi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtKraskovCMI', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # TE - Discrete
    te_estimator = JidtDiscreteTE(settings=settings)
    mi = te_estimator.estimate(source[1:], target[:-1])
    _assert_result(np.mean(mi), expected_mi, 'JidtDiscreteTE', 'TE',
                   0.08)  # More variability here
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # TE - Gaussian
    mi_estimator = JidtGaussianTE(settings=settings)
    mi = mi_estimator.estimate(source[1:], target[:-1])
    _assert_result(np.mean(mi), expected_mi, 'JidtGaussianTE', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # TE - Kraskov
    mi_estimator = JidtKraskovTE(settings=settings)
    mi = mi_estimator.estimate(source[1:], target[:-1])
    _assert_result(np.mean(mi), expected_mi, 'JidtKraskovTE', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # AIS - Kraskov
    ais_estimator = JidtKraskovAIS(settings=settings)
    mi_k = ais_estimator.estimate(ar_proc)
    assert type(mi_k) is np.ndarray, 'Local values are not a numpy array.'

    # AIS - Discrete
    ais_estimator = JidtDiscreteAIS(settings=settings)
    mi_d = ais_estimator.estimate(ar_proc)
    assert type(mi_d) is np.ndarray, 'Local values are not a numpy array.'
    # TODO should we compare these?
    # _compare_result(np.mean(mi_k), np.mean(mi_d),
    #                 'JidtKraskovAIS', 'JidtDiscreteAIS', 'AIS (AR process)')

    # AIS - Gaussian
    ais_estimator = JidtGaussianAIS(settings=settings)
    mi_g = ais_estimator.estimate(ar_proc)
    assert type(mi_g) is np.ndarray, 'Local values are not a numpy array.'
    _compare_result(np.mean(mi_k), np.mean(mi_g), 'JidtKraskovAIS',
                    'JidtGaussianAIS', 'AIS (AR process)')
コード例 #9
0
def test_local_values():
    """Test estimation of local values and their return type."""
    expected_mi, source, s, target = _get_gauss_data(expand=False)
    ar_proc, s = _get_ar_data(expand=False)

    settings = {'discretise_method': 'equal',
                'n_discrete_bins': 4,
                'history_target': 1,
                'history': 2,
                'local_values': True}

    # MI - Discrete
    mi_estimator = JidtDiscreteMI(settings=settings)
    mi = mi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtDiscreteMI', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # MI - Gaussian
    mi_estimator = JidtGaussianMI(settings=settings)
    mi = mi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtGaussianMI', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # MI - Kraskov
    mi_estimator = JidtKraskovMI(settings=settings)
    mi = mi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtKraskovMI', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # CMI - Discrete
    cmi_estimator = JidtDiscreteCMI(settings=settings)
    mi = cmi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtDiscreteCMI', 'CMI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # MI - Gaussian
    mi_estimator = JidtGaussianCMI(settings=settings)
    mi = mi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtGaussianCMI', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # MI - Kraskov
    mi_estimator = JidtKraskovCMI(settings=settings)
    mi = mi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtKraskovCMI', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # TE - Discrete
    te_estimator = JidtDiscreteTE(settings=settings)
    mi = te_estimator.estimate(source[1:], target[:-1])
    _assert_result(np.mean(mi), expected_mi, 'JidtDiscreteTE', 'TE')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # TE - Gaussian
    mi_estimator = JidtGaussianTE(settings=settings)
    mi = mi_estimator.estimate(source[1:], target[:-1])
    _assert_result(np.mean(mi), expected_mi, 'JidtGaussianTE', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # TE - Kraskov
    mi_estimator = JidtKraskovTE(settings=settings)
    mi = mi_estimator.estimate(source[1:], target[:-1])
    _assert_result(np.mean(mi), expected_mi, 'JidtKraskovTE', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # AIS - Kraskov
    ais_estimator = JidtKraskovAIS(settings=settings)
    mi_k = ais_estimator.estimate(ar_proc)
    assert type(mi_k) is np.ndarray, 'Local values are not a numpy array.'

    # AIS - Discrete
    ais_estimator = JidtDiscreteAIS(settings=settings)
    mi_d = ais_estimator.estimate(ar_proc)
    assert type(mi_d) is np.ndarray, 'Local values are not a numpy array.'
    # TODO should we compare these?
    # _compare_result(np.mean(mi_k), np.mean(mi_d),
    #                 'JidtKraskovAIS', 'JidtDiscreteAIS', 'AIS (AR process)')

    # AIS - Gaussian
    ais_estimator = JidtGaussianAIS(settings=settings)
    mi_g = ais_estimator.estimate(ar_proc)
    assert type(mi_g) is np.ndarray, 'Local values are not a numpy array.'
    _compare_result(np.mean(mi_k), np.mean(mi_g),
                    'JidtKraskovAIS', 'JidtGaussianAIS', 'AIS (AR process)')
コード例 #10
0
# Generate Gaussian test data
covariance = 0.4
n = 10000
expected_mi = np.log(1 / (1 - np.power(covariance, 2)))
source_cor = np.random.normal(0, 1, size=n)  # correlated src
source_uncor = np.random.normal(0, 1, size=n)  # uncorrelated src
target = (covariance * source_cor +
          (1 - covariance) * np.random.normal(0, 1, size=n))

# JIDT Discrete estimators
settings = {'discretise_method': 'equal', 'num_discrete_bins': 5}
est = JidtDiscreteCMI(settings)
cmi = est.estimate(source_cor, target, source_uncor)
print('Estimated CMI: {0:.5f}, expected CMI: {1:.5f}'.format(cmi, expected_mi))
est = JidtDiscreteMI(settings)
mi = est.estimate(source_cor, target)
print('Estimated MI: {0:.5f}, expected MI: {1:.5f}'.format(mi, expected_mi))
settings['history_target'] = 1
est = JidtDiscreteTE(settings)
te = est.estimate(source_cor[1:n], target[0:n - 1])
print('Estimated TE: {0:.5f}, expected TE: {1:.5f}'.format(te, expected_mi))
settings['history'] = 1
est = JidtDiscreteAIS(settings)
ais = est.estimate(target)
print('Estimated AIS: {0:.5f}, expected AIS: ~0'.format(ais))

# JIDT Kraskov estimators
settings = {}
est = JidtKraskovCMI(settings)
cmi = est.estimate(source_cor, target, source_uncor)