def test_init_scenario_1(): dict_x = { "name": ["Tom", "Harry", "Dick", "Jerry"], "age": [10, 20, 30, 40] } df1 = DataFrame(dict_x) expected_output = [ { "name": "Tom", "age": 10 }, { "name": "Harry", "age": 20 }, { "name": "Dick", "age": 30 }, { "name": "Jerry", "age": 40 }, ] actual_output = df1.get_rows(0, 4) # assert np.array_equal(actual_output, expected_output) assert actual_output == expected_output
def test_colnames(): dict_x = { "name": ["Tom", "Harry", "Dick", "Jerry"], "age": [10, 20, 30, 40] } df1 = DataFrame(dict_x) expected_output = ["name", "age"] actual_output = df1.column_names() assert actual_output == expected_output
def test_median(): dict_x = { "name": ["Tom", "Harry", "Dick", "Jerry"], "age": [10, 20, 30, 40], "cars": [1, 2, 3, 4], } df1 = DataFrame(dict_x) expected_output = [{"age": 25, "cars": 2.5}] actual_output = df1.median() assert actual_output == expected_output
def test_sum(): dict_x = { "name": ["Tom", "Harry", "Dick", "Jerry"], "age": [10, 20, 30, 40], "cars": [1, 2, 3, 4], } df1 = DataFrame(dict_x) expected_output = [{'age': 100, 'cars': 10}] actual_output = df1.sum() assert actual_output == expected_output
def test_init_error_scenario_1(): with pytest.raises(ValueError) as excinfo: dict_x = [["Tom", "Harry", "Dick", "Jerry"], [10, 20, 30, 40]] df1 = DataFrame(dict_x) assert str( excinfo.value) == "Wrong_Input_Type: Only dictionary is acceptable"
def test_init_error_scenario_4(): with pytest.raises(ValueError) as excinfo: dict_x = { "name": ["Tom", "Harry", "Dick", "Jerry"], "age": [10, 20, "30", 40] } df1 = DataFrame(dict_x) assert str( excinfo.value) == "All the values in a column should be the same type"
def test_init_error_scenario_3(): with pytest.raises(ValueError) as excinfo: dict_x = { "name": ["Tom", "Harry", "Dick", "Jerry"], "age": [None, 20, 30, 40] } df1 = DataFrame(dict_x) assert ( str(excinfo.value) == "Wrong_Data_Type: Only integer, float,boolean and string are accepted")
def test_init_error_scenario_2(): with pytest.raises(ValueError) as excinfo: dict_x = { "name": ("Tom", "Harry", "Dick", "Jerry"), "age": (10, 20, 30, 40) } df1 = DataFrame(dict_x) assert ( str(excinfo.value) == "Wrong_Input_Type: Only dictionaryof list or Numpy array is acccepted")
from ie_pandas.DataFrame import DataFrame import pytest import numpy as np dict_x = {"name": ["Tom", "Harry", "Dick", "Jerry"], "age": [10, 20, 30, 40]} df1 = DataFrame(dict_x) def test_get_row_scenario_1(): expected_output = np.array([10, 20, 30, 40]) actual_output = df1["age"] assert np.array_equal(actual_output, expected_output) def test_get_row_error_scenario_1(): with pytest.raises(ValueError) as excinfo: df1["Nationality"] assert (str(excinfo.value) == "Wrong_Column_Name: Column is not present in the DataFrame")
import pytest import numpy as np from ie_pandas.DataFrame import DataFrame _dic1 = { "name": ["Georges", "Alexandre", "Kelly"], "Family": ["Koury", "Trump", "McKinsey"], "age": [25, 26, 30], } _df = DataFrame(_dic1) _dic2 = {"a": [3, 4, 5, 6], 1: [3, 4, 5, 6]} _df2 = DataFrame(_dic2) _dic3 = { "list": [10, 11, 12, 13], "numpy": np.array([7, 8, 9, 10]), "str": ["a", "b", "c", "d"], } _df3 = DataFrame(_dic3) @pytest.mark.parametrize( "expected, colnames", [ (np.array([25, 26, 30]), ("age")), ( np.array([