def load_vocab(args): path = None if args.baseline_model is not None: path = args.baseline_model elif args.execution_engine is not None: path = args.execution_engine elif args.program_generator is not None: path = args.program_generator return utils.load_cpu(path)['vocab']
def main(args): if (args.input_vocab_json == '') and (args.output_vocab_json == '') and (args.input_vocab_pt == ''): print( 'Must give one of --input_vocab_json or --output_vocab_json or --input_vocab_pt' ) return print('Loading data') with open(args.input_questions_json, 'r') as f: questions = json.load(f)['questions'] # Either create the vocab or load it from disk if (args.input_vocab_json == '' and args.input_vocab_pt == '') or args.expand_vocab == 1: print('Building vocab') if 'answer' in questions[0]: answer_token_to_idx = build_vocab((q['answer'] for q in questions)) question_token_to_idx = build_vocab((q['question'] for q in questions), min_token_count=args.unk_threshold, punct_to_keep=[';', ','], punct_to_remove=['?', '.']) all_program_strs = [] for q in questions: if 'program' not in q: continue program_str = program_to_str(q['program'], args.mode) if program_str is not None: all_program_strs.append(program_str) program_token_to_idx = build_vocab(all_program_strs) vocab = { 'question_token_to_idx': question_token_to_idx, 'program_token_to_idx': program_token_to_idx, 'answer_token_to_idx': answer_token_to_idx, } if args.input_vocab_json != '': print('Loading vocab') if args.expand_vocab == 1: new_vocab = vocab with open(args.input_vocab_json, 'r') as f: vocab = json.load(f) if args.expand_vocab == 1: num_new_words = 0 for word in new_vocab['question_token_to_idx']: if word not in vocab['question_token_to_idx']: print('Found new word %s' % word) idx = len(vocab['question_token_to_idx']) vocab['question_token_to_idx'][word] = idx num_new_words += 1 print('Found %d new words' % num_new_words) elif args.input_vocab_pt != '': print('Loading vocab') if args.expand_vocab == 1: new_vocab = vocab vocab = utils.load_cpu(args.input_vocab_pt)['vocab'] if args.expand_vocab == 1: num_new_words = 0 for word in new_vocab['question_token_to_idx']: if word not in vocab['question_token_to_idx']: print('Found new word %s' % word) idx = len(vocab['question_token_to_idx']) vocab['question_token_to_idx'][word] = idx num_new_words += 1 print('Found %d new words' % num_new_words) if args.output_vocab_json != '': with open(args.output_vocab_json, 'w') as f: json.dump(vocab, f) # Encode all questions and programs print('Encoding data') questions_encoded = [] programs_encoded = [] question_families = [] orig_idxs = [] image_idxs = [] answers = [] for orig_idx, q in enumerate(questions): question = q['question'] orig_idxs.append(orig_idx) image_idxs.append(q['image_index']) if 'question_family_index' in q: question_families.append(q['question_family_index']) question_tokens = tokenize(question, punct_to_keep=[';', ','], punct_to_remove=['?', '.']) question_encoded = encode(question_tokens, vocab['question_token_to_idx'], allow_unk=args.encode_unk == 1) questions_encoded.append(question_encoded) if 'program' in q: program = q['program'] program_str = program_to_str(program, args.mode) program_tokens = tokenize(program_str) program_encoded = encode(program_tokens, vocab['program_token_to_idx']) programs_encoded.append(program_encoded) if 'answer' in q: answer = q['answer'] if answer is True: answer = 'yes' elif answer is False: answer = 'no' else: answer = str(answer) if answer in vocab['answer_token_to_idx']: answers.append(vocab['answer_token_to_idx'][answer]) else: print('Answer %s to %s is missing' % (answer, question)) answers.append(0) # Pad encoded questions and programs max_question_length = max(len(x) for x in questions_encoded) for qe in questions_encoded: while len(qe) < max_question_length: qe.append(vocab['question_token_to_idx']['<NULL>']) if len(programs_encoded) > 0: max_program_length = max(len(x) for x in programs_encoded) for pe in programs_encoded: while len(pe) < max_program_length: pe.append(vocab['program_token_to_idx']['<NULL>']) # Create h5 file print('Writing output') questions_encoded = np.asarray(questions_encoded, dtype=np.int32) programs_encoded = np.asarray(programs_encoded, dtype=np.int32) print(questions_encoded.shape) print(programs_encoded.shape) with h5py.File(args.output_h5_file, 'w') as f: f.create_dataset('questions', data=questions_encoded) f.create_dataset('image_idxs', data=np.asarray(image_idxs)) f.create_dataset('orig_idxs', data=np.asarray(orig_idxs)) if len(programs_encoded) > 0: f.create_dataset('programs', data=programs_encoded) if len(question_families) > 0: f.create_dataset('question_families', data=np.asarray(question_families)) if len(answers) > 0: f.create_dataset('answers', data=np.asarray(answers))