コード例 #1
0
ファイル: cad.py プロジェクト: girving/igakit
def extrude(nrb, displ, axis=None):
    """
    Construct a NURBS surface/volume by
    extruding a NURBS curve/surface.

    Parameters
    ----------
    nrb : NURBS
    displ : array_like or float
    axis : array_like or int, optional

    Example
    -------

    >>> crv = circle()
    >>> srf = extrude(crv, displ=1, axis=2)

    >>> srf = bilinear()
    >>> vol = extrude(srf, displ=1, axis=2)

    """
    assert nrb.dim <= 2
    T = transform().translate(displ, axis)
    Cw = np.empty(nrb.shape+(2,4))
    Cw[...,0,:] = nrb.control
    Cw[...,1,:] = T(nrb.control)
    UVW = nrb.knots + ([0,0,1,1],)
    return NURBS(UVW, Cw)
コード例 #2
0
def extrude(nrb, displ, axis=None):
    """
    Construct a NURBS surface/volume by
    extruding a NURBS curve/surface.

    Parameters
    ----------
    nrb : NURBS
    displ : array_like or float
    axis : array_like or int, optional

    Example
    -------

    >>> crv = circle()
    >>> srf = extrude(crv, displ=1, axis=2)

    >>> srf = bilinear()
    >>> vol = extrude(srf, displ=1, axis=2)

    """
    assert nrb.dim <= 2
    T = transform().translate(displ, axis)
    Cw = np.empty(nrb.shape + (2, 4))
    Cw[..., 0, :] = nrb.control
    Cw[..., 1, :] = T(nrb.control)
    UVW = nrb.knots + ([0, 0, 1, 1], )
    return NURBS(UVW, Cw)
コード例 #3
0
ファイル: nurbs.py プロジェクト: girving/igakit
    def transform(self, trans):
        """
        Apply a scaling, rotation, or a translation to a NURBS object.

        A NURBS object can be scaled, rotated, or translated by
        applying the tranformation to the control points. To contruct
        composite transformations, consult the docstrings in
        :mod:`igakit.transform`.

        Parameters
        ----------
        trans : array_like
            a matrix or transformation which scales, rotates,
            and/or translates a NURBS object.

        """
        if not isinstance(trans, transform):
            trans = transform(trans)
        array = self.array.copy()
        array[...,:4] = trans(self.control)
        self._array = np.ascontiguousarray(array)
        return self
コード例 #4
0
    def transform(self, trans):
        """
        Apply a scaling, rotation, or a translation to a NURBS object.

        A NURBS object can be scaled, rotated, or translated by
        applying the tranformation to the control points. To contruct
        composite transformations, consult the docstrings in
        :mod:`igakit.transform`.

        Parameters
        ----------
        trans : array_like
            a matrix or transformation which scales, rotates,
            and/or translates a NURBS object.

        """
        if not isinstance(trans, transform):
            trans = transform(trans)
        array = self.array.copy()
        array[..., :4] = trans(self.control)
        self._array = np.ascontiguousarray(array)
        return self
コード例 #5
0
def revolve(nrb, filename, point, axis=2, angle=None):
    """
    Construct a NURBS surface/volume by
    revolving a NURBS curve/surface.

    Parameters
    ----------
    nrb : NURBS
    point : array_like
    axis : int or array_like, optional
    angle : float or 2-tuple of floats, optional

    Example
    -------

    >>> crv = line(1,2)
    >>> srf = revolve(crv, point=0, axis=2, angle=[Pi/2,2*Pi])
    >>> vol = revolve(srf, point=3, axis=1, angle=-Pi/2)

    """
    assert nrb.dim <= 2
    point = np.asarray(point, dtype='d')
    assert point.ndim in (0, 1)
    assert point.size <= 3
    axis = np.asarray(axis)
    assert axis.ndim in (0, 1)
    assert 1 <= axis.size <= 3
    if axis.ndim == 0:
        v = np.zeros(3, dtype='d')
        axis = (0, 1, 2)[int(axis)]
        v[axis] = 1
    else:
        v = np.zeros(3, dtype='d')
        v[:axis.size] = axis
        norm_axis = np.linalg.norm(v)
        assert norm_axis > 0
        v /= norm_axis
    # Transform the NURBS object to a new reference frame
    # (O,X,Y,Z) centered at point and z-oriented with axis
    n = [v[1], -v[0], 0]  # n = cross(v, z)
    gamma = np.arccos(v[2])  # cos_gamma = dot(v, z)
    T = transform().translate(-point).rotate(gamma, n)
    nrb = nrb.clone().transform(T)
    # Map cartesian coordinates (x,y,z) to cylindrical coordinates
    # (rho,theta,z) with theta in [0,2*pi] and precompute sines and
    # cosines of theta angles.
    Cw = nrb.control
    X, Y, Z, W = (Cw[..., i] for i in range(4))
    rho = np.hypot(X, Y)
    theta = np.arctan2(Y, X)
    theta[theta < 0] += 2 * np.pi
    sines, cosines = np.sin(theta), np.cos(theta)
    # Create a circular arc in the XY plane
    matX = scipy.io.loadmat(filename)
    knotsX = np.array(matX['knots'])
    knotsX = knotsX.tolist()[0]
    CX = np.transpose(np.array(matX['controlPoints']))
    UX = knotsX
    arc = NURBS([UX], CX)
    #arc = circle(angle=angle)
    Aw = arc.control
    # Allocate control points and knots of the result
    Qw = np.empty(nrb.shape + arc.shape + (4, ))
    UVW = nrb.knots + arc.knots
    # Loop over all control points of the NURBS object
    # to revolve taking advantage of NumPy nd-indexing
    dot = np.dot  # inline numpy.dot
    zeros = np.zeros  # inline numpy.zeros
    for idx in np.ndindex(nrb.shape):
        z = Z[idx]
        w = W[idx]
        r = rho[idx]
        r_sin_a = r * sines[idx]
        r_cos_a = r * cosines[idx]
        # for the sake of speed, inline
        # the transformation matrix
        # M = Rz(theta)*Tz(z)*Sxy(rho)
        M = zeros((4, 4))
        M[0, 0] = r_cos_a
        M[0, 1] = -r_sin_a
        M[1, 0] = r_sin_a
        M[1, 1] = r_cos_a
        M[2, 3] = z
        M[3, 3] = 1
        # Compute new 4D control points by transforming the
        # arc control point and tensor-product the weights
        Qi = Qw[idx]
        Qi[...] = dot(Aw, M.T)
        Qi[..., 3] *= w
    # Create the new NURBS object and map
    # back to the original reference frame
    return NURBS(UVW, Qw).transform(T.invert())
コード例 #6
0
def circle(radius=1, center=None, angle=None):
    """
    Construct a NURBS circular arc or full circle

    Parameters
    ----------
    radius : float, optional
    center : array_like, optional
    angle : float or 2-tuple of floats, optional

    Examples
    --------

    >>> crv = circle()
    >>> crv.shape
    (9,)
    >>> P = crv([0, 0.25, 0.5, 0.75, 1])
    >>> assert np.allclose(P[0], ( 1,  0, 0))
    >>> assert np.allclose(P[1], ( 0,  1, 0))
    >>> assert np.allclose(P[2], (-1,  0, 0))
    >>> assert np.allclose(P[3], ( 0, -1, 0))
    >>> assert np.allclose(P[4], ( 1,  0, 0))

    >>> crv = circle(angle=3*Pi/2)
    >>> crv.shape
    (7,)
    >>> P = crv([0, 1/3., 2/3., 1])
    >>> assert np.allclose(P[0], ( 1,  0, 0))
    >>> assert np.allclose(P[1], ( 0,  1, 0))
    >>> assert np.allclose(P[2], (-1,  0, 0))
    >>> assert np.allclose(P[3], ( 0, -1, 0))

    >>> crv = circle(radius=2, center=(1,1), angle=(Pi/2,-Pi/2))
    >>> crv.shape
    (5,)
    >>> P = crv([0, 0.5, 1])
    >>> assert np.allclose(P[0], (1,  3, 0))
    >>> assert np.allclose(P[1], (3,  1, 0))
    >>> assert np.allclose(P[2], (1, -1, 0))

    >>> crv = circle(radius=3, center=2, angle=Pi/2)
    >>> crv.shape
    (3,)
    >>> P = crv([0, 1])
    >>> assert np.allclose(P[0], ( 5, 0, 0))
    >>> assert np.allclose(P[1], ( 2, 3, 0))

    """
    if angle is None:
        # Full circle, 4 knot spans, 9 control points
        #spans = 4
        #Cw = np.zeros((9,4), dtype='d')
        #Cw[:,:2] = [[ 1, 0], [ 1, 1], [ 0, 1],
        #            [-1, 1], [-1, 0], [-1,-1],
        #            [ 0,-1], [ 1,-1], [ 1, 0]]
        #Cw[:,:2] *= radius
        #wm = np.sqrt(2)/2
        #Cw[:,3] = 1; Cw[1::2,:] *= wm
        #Modified to permit C^1 circle
        # Full circle, 2 knot spans, 5 control points
        spans = 2
        Cw = np.zeros((6, 4), dtype='d')
        #Cw[:,:] = [[ 1, 0, 0, 9], [ 1, 2, 0, 1], [ -1, 2, 0, 1.0/3],
        #            [-1, -2, 0, 1.0/3], [1, -2, 0, 1], [1 ,0 ,0 ,9]]
        Cw[:, :] = [[1 * 9, 0, 0, 9], [1, 2, 0, 1],
                    [-1 * 1.0 / 3, 2 * 1.0 / 3, 0, 1.0 / 3],
                    [-1 * 1.0 / 3, -2 * 1.0 / 3, 0, 1.0 / 3], [1, -2, 0, 1],
                    [1 * 9, 0, 0, 9]]
        Cw[:, :2] *= radius

    else:
        raise Exception('For angle<360 new C^1 knots not yet implemented',
                        'For angle<360 new C^1 knots not yet implemented')
        Pi = np.pi  # inline numpy.pi
        # Determine start and end angles
        if isinstance(angle, (tuple, list)):
            start, end = angle
            if start is None: start = 0
            if end is None: end = 2 * Pi
        else:
            start, end = 0, angle
        # Compute sweep and number knot spans
        sweep = end - start
        quadrants = (0.0, Pi / 2, Pi, 3 * Pi / 2)
        spans = np.searchsorted(quadrants, abs(sweep))
        # Construct a single-segment NURBS circular arc
        # centered at the origin and bisected by +X axis
        alpha = sweep / (2 * spans)
        sin_a = np.sin(alpha)
        cos_a = np.cos(alpha)
        tan_a = np.tan(alpha)
        x = radius * cos_a
        y = radius * sin_a
        wm = cos_a
        xm = x + y * tan_a
        Ca = [[x, -y, 0, 1], [wm * xm, 0, 0, wm], [x, y, 0, 1]]
        # Compute control points by successive rotation
        # of the controls points in the first segment
        Cw = np.empty((2 * spans + 1, 4), dtype='d')
        R = transform().rotate(alpha + start, 2)
        Cw[0:3, :] = R(Ca)
        if spans > 1:
            R = transform().rotate(2 * alpha, 2)
            for i in range(1, spans):
                n = 2 * i + 1
                Cw[n:n + 2, :] = R(Cw[n - 2:n, :])
    # Translate control points to center
    if center is not None:
        T = transform().translate(center)
        Cw = T(Cw)
    # Compute knot vector in the range [0,1]
    #a, b = 0, 1
    #U = np.empty(2*(spans+1)+2, dtype='d')
    #U[0], U[-1] = a, b
    #U[1:-1] = np.linspace(a,b,spans+1).repeat(2)
    U = np.array([0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 1.0, 1.0, 1.0, 1.0])
    # Return the new NURBS object
    return NURBS([U], Cw)
コード例 #7
0
ファイル: nurbs.py プロジェクト: girving/igakit
 def rotate(self, angle, axis=2):
     t = transform().rotate(angle, axis)
     return self.transform(t)
コード例 #8
0
ファイル: nurbs.py プロジェクト: girving/igakit
 def scale(self, scale, axis=None):
     t = transform().scale(scale, axis)
     return self.transform(t)
コード例 #9
0
ファイル: nurbs.py プロジェクト: girving/igakit
 def move(self, displ, axis=None):
     t = transform().move(displ, axis)
     return self.transform(t)
コード例 #10
0
ファイル: nurbs.py プロジェクト: girving/igakit
 def translate(self, displ, axis=None):
     t = transform().translate(displ, axis)
     return self.transform(t)
コード例 #11
0
ファイル: cad.py プロジェクト: girving/igakit
def revolve(nrb, point, axis=2, angle=None):
    """
    Construct a NURBS surface/volume by
    revolving a NURBS curve/surface.

    Parameters
    ----------
    nrb : NURBS
    point : array_like
    axis : int or array_like, optional
    angle : float or 2-tuple of floats, optional

    Example
    -------

    >>> crv = line(1,2)
    >>> srf = revolve(crv, point=0, axis=2, angle=[Pi/2,2*Pi])
    >>> vol = revolve(srf, point=3, axis=1, angle=-Pi/2)

    """
    assert nrb.dim <= 2
    point = np.asarray(point, dtype='d')
    assert point.ndim in (0, 1)
    assert point.size <= 3
    axis = np.asarray(axis)
    assert axis.ndim in (0, 1)
    assert 1 <= axis.size <= 3
    if axis.ndim == 0:
        v = np.zeros(3, dtype='d')
        axis = (0,1,2)[int(axis)]
        v[axis] = 1
    else:
        v = np.zeros(3, dtype='d')
        v[:axis.size] = axis
        norm_axis = np.linalg.norm(v)
        assert norm_axis > 0
        v /= norm_axis
    # Transform the NURBS object to a new reference frame
    # (O,X,Y,Z) centered at point and z-oriented with axis
    n = [v[1], -v[0], 0]    # n = cross(v, z)
    gamma = np.arccos(v[2]) # cos_gamma = dot(v, z)
    T = transform().translate(-point).rotate(gamma, n)
    nrb = nrb.clone().transform(T)
    # Map cartesian coordinates (x,y,z) to cylindrical coordinates
    # (rho,theta,z) with theta in [0,2*pi] and precompute sines and
    # cosines of theta angles.
    Cw = nrb.control
    X, Y, Z, W = (Cw[...,i] for i in range(4))
    rho = np.hypot(X, Y)
    theta = np.arctan2(Y, X); theta[theta<0] += 2*np.pi
    sines, cosines = np.sin(theta), np.cos(theta)
    # Create a circular arc in the XY plane
    arc = circle(angle=angle)
    Aw = arc.control
    # Allocate control points and knots of the result
    Qw = np.empty(nrb.shape + arc.shape + (4,))
    UVW = nrb.knots + arc.knots
    # Loop over all control points of the NURBS object
    # to revolve taking advantage of NumPy nd-indexing
    dot = np.dot # inline numpy.dot
    zeros = np.zeros # inline numpy.zeros
    for idx in np.ndindex(nrb.shape):
        z = Z[idx]
        w = W[idx]
        r = rho[idx]
        r_sin_a = r*sines[idx]
        r_cos_a = r*cosines[idx]
        # for the sake of speed, inline
        # the transformation matrix
        # M = Rz(theta)*Tz(z)*Sxy(rho)
        M = zeros((4,4))
        M[0,0] = r_cos_a; M[0,1] = -r_sin_a
        M[1,0] = r_sin_a; M[1,1] =  r_cos_a
        M[2,3] = z
        M[3,3] = 1
        # Compute new 4D control points by transforming the
        # arc control point and tensor-product the weights
        Qi = Qw[idx]
        Qi[...] = dot(Aw, M.T)
        Qi[...,3] *= w
    # Create the new NURBS object and map
    # back to the original reference frame
    return NURBS(UVW, Qw).transform(T.invert())
コード例 #12
0
ファイル: cad.py プロジェクト: girving/igakit
def circle(radius=1, center=None, angle=None):
    """
    Construct a NURBS circular arc or full circle

    Parameters
    ----------
    radius : float, optional
    center : array_like, optional
    angle : float or 2-tuple of floats, optional

    Examples
    --------

    >>> crv = circle()
    >>> crv.shape
    (9,)
    >>> P = crv([0, 0.25, 0.5, 0.75, 1])
    >>> assert np.allclose(P[0], ( 1,  0, 0))
    >>> assert np.allclose(P[1], ( 0,  1, 0))
    >>> assert np.allclose(P[2], (-1,  0, 0))
    >>> assert np.allclose(P[3], ( 0, -1, 0))
    >>> assert np.allclose(P[4], ( 1,  0, 0))

    >>> crv = circle(angle=3*Pi/2)
    >>> crv.shape
    (7,)
    >>> P = crv([0, 1/3., 2/3., 1])
    >>> assert np.allclose(P[0], ( 1,  0, 0))
    >>> assert np.allclose(P[1], ( 0,  1, 0))
    >>> assert np.allclose(P[2], (-1,  0, 0))
    >>> assert np.allclose(P[3], ( 0, -1, 0))

    >>> crv = circle(radius=2, center=(1,1), angle=(Pi/2,-Pi/2))
    >>> crv.shape
    (5,)
    >>> P = crv([0, 0.5, 1])
    >>> assert np.allclose(P[0], (1,  3, 0))
    >>> assert np.allclose(P[1], (3,  1, 0))
    >>> assert np.allclose(P[2], (1, -1, 0))

    >>> crv = circle(radius=3, center=2, angle=Pi/2)
    >>> crv.shape
    (3,)
    >>> P = crv([0, 1])
    >>> assert np.allclose(P[0], ( 5, 0, 0))
    >>> assert np.allclose(P[1], ( 2, 3, 0))

    """
    if angle is None:
        # Full circle, 4 knot spans, 9 control points
        spans = 4
        Cw = np.zeros((9,4), dtype='d')
        Cw[:,:2] = [[ 1, 0], [ 1, 1], [ 0, 1],
                    [-1, 1], [-1, 0], [-1,-1],
                    [ 0,-1], [ 1,-1], [ 1, 0]]
        Cw[:,:2] *= radius
        wm = np.sqrt(2)/2
        Cw[:,3] = 1; Cw[1::2,:] *= wm
    else:
        Pi = np.pi # inline numpy.pi
        # Determine start and end angles
        if isinstance(angle, (tuple, list)):
            start, end = angle
            if start is None: start = 0
            if end is None: end = 2*Pi
        else:
            start, end = 0, angle
        # Compute sweep and number knot spans
        sweep = end - start
        quadrants = (0.0, Pi/2, Pi, 3*Pi/2)
        spans = np.searchsorted(quadrants, abs(sweep))
        # Construct a single-segment NURBS circular arc
        # centered at the origin and bisected by +X axis
        alpha = sweep/(2*spans)
        sin_a = np.sin(alpha)
        cos_a = np.cos(alpha)
        tan_a = np.tan(alpha)
        x = radius*cos_a
        y = radius*sin_a
        wm = cos_a
        xm = x + y*tan_a
        Ca = [[    x, -y, 0,  1],
              [wm*xm,  0, 0, wm],
              [    x,  y, 0,  1]]
        # Compute control points by successive rotation
        # of the controls points in the first segment
        Cw = np.empty((2*spans+1,4), dtype='d')
        R = transform().rotate(alpha+start, 2)
        Cw[0:3,:] = R(Ca)
        if spans > 1:
            R = transform().rotate(2*alpha, 2)
            for i in range(1, spans):
                n = 2*i+1
                Cw[n:n+2,:] = R(Cw[n-2:n,:])
    # Translate control points to center
    if center is not None:
        T = transform().translate(center)
        Cw = T(Cw)
    # Compute knot vector in the range [0,1]
    a, b = 0, 1
    U = np.empty(2*(spans+1)+2, dtype='d')
    U[0], U[-1] = a, b
    U[1:-1] = np.linspace(a,b,spans+1).repeat(2)
    # Return the new NURBS object
    return NURBS([U], Cw)
コード例 #13
0
 def rotate(self, angle, axis=2):
     t = transform().rotate(angle, axis)
     return self.transform(t)
コード例 #14
0
 def scale(self, scale, axis=None):
     t = transform().scale(scale, axis)
     return self.transform(t)
コード例 #15
0
 def move(self, displ, axis=None):
     t = transform().move(displ, axis)
     return self.transform(t)
コード例 #16
0
 def translate(self, displ, axis=None):
     t = transform().translate(displ, axis)
     return self.transform(t)