コード例 #1
0
def test_concat_scheduler_asserts():

    tensor = torch.zeros([1], requires_grad=True)
    optimizer = torch.optim.SGD([tensor], lr=0)

    scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=1.0, end_value=0.0, cycle_size=10)
    scheduler_2 = CosineAnnealingScheduler(optimizer, "lr", start_value=0.0, end_value=1.0, cycle_size=10)

    with pytest.raises(ValueError):
        ConcatScheduler(schedulers=[], durations=[])

    with pytest.raises(ValueError):
        ConcatScheduler(schedulers=[scheduler_1], durations=[10])

    with pytest.raises(TypeError):
        ConcatScheduler(schedulers=[scheduler_1, 12], durations=[10])

    with pytest.raises(ValueError):
        ConcatScheduler(schedulers=[scheduler_1, scheduler_2], durations=[10, 5])

    with pytest.raises(ValueError):
        ConcatScheduler(schedulers=[scheduler_1, scheduler_2, scheduler_2], durations=[15, 12.0])

    with pytest.raises(ValueError):
        ConcatScheduler(schedulers=[scheduler_1, scheduler_2], durations="abc")

    with pytest.raises(ValueError):
        ConcatScheduler.simulate_values(
            num_events=123, schedulers=[scheduler_1, scheduler_2], durations=[15], param_names="abc"
        )
コード例 #2
0
def test_concat_scheduler_asserts():

    tensor = torch.zeros([1], requires_grad=True)
    optimizer = torch.optim.SGD([tensor], lr=0)

    scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=1.0, end_value=0.0, cycle_size=10)
    scheduler_2 = CosineAnnealingScheduler(optimizer, "lr", start_value=0.0, end_value=1.0, cycle_size=10)

    with pytest.raises(TypeError, match=r"Argument schedulers should be a sequence"):
        ConcatScheduler(schedulers=None, durations=[])

    with pytest.raises(ValueError, match=r"Argument schedulers should be of more than one parameter schedulers"):
        ConcatScheduler(schedulers=[], durations=[])

    with pytest.raises(ValueError, match=r"Argument schedulers should be of more than one parameter schedulers"):
        ConcatScheduler(schedulers=[scheduler_1], durations=[10])

    with pytest.raises(TypeError, match=r"Value at index 1 of schedulers should be a parameter scheduler"):
        ConcatScheduler(schedulers=[scheduler_1, 12], durations=[10])

    with pytest.raises(ValueError, match=r"Incorrect number schedulers or duration values"):
        ConcatScheduler(schedulers=[scheduler_1, scheduler_2], durations=[10, 5])

    with pytest.raises(ValueError, match=r"Argument durations should be list/tuple of integers"):
        ConcatScheduler(schedulers=[scheduler_1, scheduler_2, scheduler_2], durations=[15, 12.0])

    with pytest.raises(TypeError, match=r"Argument durations should be list/tuple"):
        ConcatScheduler(schedulers=[scheduler_1, scheduler_2], durations="abc")

    with pytest.raises(TypeError, match=r"Argument param_names should be list or tuple"):
        ConcatScheduler.simulate_values(
            num_events=123, schedulers=[scheduler_1, scheduler_2], durations=[15], param_names="abc"
        )

    with pytest.raises(ValueError, match=r"Argument param_names should be list or tuple of strings"):
        ConcatScheduler.simulate_values(
            num_events=123, schedulers=[scheduler_1, scheduler_2], durations=[15], param_names=[1]
        )

    optimizer_2 = torch.optim.SGD([tensor], lr=0)
    scheduler_3 = CosineAnnealingScheduler(optimizer_2, "lr", start_value=0.0, end_value=1.0, cycle_size=10)

    with pytest.raises(ValueError, match=r"schedulers should be related to same optimizer"):
        ConcatScheduler([scheduler_1, scheduler_3], durations=[30,])
コード例 #3
0
def test_concat_scheduler_two_linear():
    tensor = torch.zeros([1], requires_grad=True)
    optimizer = torch.optim.SGD([tensor], lr=0)

    scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.0, end_value=0.1, cycle_size=2)
    scheduler_2 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.2, end_value=1.0, cycle_size=2)

    durations = [5, ]
    concat_scheduler = ConcatScheduler(schedulers=[scheduler_1, scheduler_2],
                                       durations=durations, save_history=True)

    assert concat_scheduler.get_param() == 0.0

    data = [0] * 10
    max_epochs = 2
    simulated_values = ConcatScheduler.simulate_values(num_events=len(data) * max_epochs,
                                                       schedulers=[scheduler_1, scheduler_2],
                                                       durations=durations)

    lrs = []

    def save_lr(engine):
        lrs.append(optimizer.param_groups[0]['lr'])

    trainer = Engine(lambda engine, batch: None)
    trainer.add_event_handler(Events.ITERATION_STARTED, concat_scheduler)
    trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr)
    trainer.run(data, max_epochs=max_epochs)

    assert lrs == list(map(pytest.approx, [
        # first LinearCyclicalScheduler
        0.0, 0.1, 0.0, 0.1, 0.0,
        # second LinearCyclicalScheduler
        0.2, 1.0, 0.2, 1.0, 0.2, 1.0, 0.2, 1.0,
        0.2, 1.0, 0.2, 1.0, 0.2, 1.0, 0.2,
    ]))

    state_lrs = trainer.state.param_history['lr']
    assert len(state_lrs) == len(lrs)
    # Unpack singleton lists
    assert [group[0] for group in state_lrs] == lrs

    assert lrs == pytest.approx([v for i, v in simulated_values])
コード例 #4
0
def test_concat_scheduler_3_schedulers():
    tensor = torch.zeros([1], requires_grad=True)
    optimizer = torch.optim.SGD([tensor], lr=0)

    scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=1.0, end_value=0.5, cycle_size=20)
    scheduler_2 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.5, end_value=0.45, cycle_size=10)
    scheduler_3 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.5, end_value=0.0, cycle_size=20)
    durations = [10, 5]

    concat_scheduler = ConcatScheduler(schedulers=[scheduler_1, scheduler_2, scheduler_3],
                                       durations=durations, save_history=True)

    data = [0] * 10
    max_epochs = 2
    simulated_values = ConcatScheduler.simulate_values(num_events=len(data) * max_epochs,
                                                       schedulers=[scheduler_1, scheduler_2, scheduler_3],
                                                       durations=durations)
    lrs = []

    def save_lr(engine):
        lrs.append(optimizer.param_groups[0]['lr'])

    trainer = Engine(lambda engine, batch: None)
    trainer.add_event_handler(Events.ITERATION_STARTED, concat_scheduler)
    trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr)
    trainer.run(data, max_epochs=max_epochs)

    assert lrs == list(map(pytest.approx, [
        # Cycle 1 of the first LinearCyclicalScheduler
        1.0, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55,
        # Cycle 1 of the second LinearCyclicalScheduler
        0.5, 0.49, 0.48, 0.47, 0.46,
        # Cycle 1 of the third LinearCyclicalScheduler
        0.5, 0.45, 0.4, 0.35, 0.3,
    ]))

    state_lrs = trainer.state.param_history['lr']
    assert len(state_lrs) == len(lrs)
    # Unpack singleton lists
    assert [group[0] for group in state_lrs] == lrs

    assert lrs == pytest.approx([v for i, v in simulated_values])
コード例 #5
0
    def _test(duration_vals_as_np_int):
        scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=1.0, end_value=0.0, cycle_size=10)
        scheduler_2 = CosineAnnealingScheduler(optimizer, "lr", start_value=0.0, end_value=1.0, cycle_size=10)

        durations = [10, ]
        if duration_vals_as_np_int:
            durations = [np.int64(t) for t in durations]

        concat_scheduler = ConcatScheduler(schedulers=[scheduler_1, scheduler_2],
                                           durations=durations, save_history=True)

        data = [0] * 10
        max_epochs = 2
        simulated_values = ConcatScheduler.simulate_values(num_events=len(data) * max_epochs,
                                                           schedulers=[scheduler_1, scheduler_2],
                                                           durations=durations)

        lrs = []

        def save_lr(engine):
            lrs.append(optimizer.param_groups[0]['lr'])

        trainer = Engine(lambda engine, batch: None)
        trainer.add_event_handler(Events.ITERATION_STARTED, concat_scheduler)
        trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr)
        trainer.run(data, max_epochs=max_epochs)

        assert lrs == list(map(pytest.approx, [
            # Cycle 1 of the LinearCyclicalScheduler
            1.0, 0.8, 0.6, 0.4, 0.2,
            0.0, 0.2, 0.4, 0.6, 0.8,
            # Cycle 1 of the CosineAnnealingScheduler
            0.0, 0.02447174185242318, 0.09549150281252627, 0.20610737385376332, 0.3454915028125263,
            0.5, 0.6545084971874737, 0.7938926261462365, 0.9045084971874737, 0.9755282581475768,
        ]))

        state_lrs = trainer.state.param_history['lr']
        assert len(state_lrs) == len(lrs)
        # Unpack singleton lists
        assert [group[0] for group in state_lrs] == lrs

        assert lrs == pytest.approx([v for i, v in simulated_values])