def run(output_path, config): device = "cuda" local_rank = config['local_rank'] distributed = backend is not None if distributed: torch.cuda.set_device(local_rank) device = "cuda" rank = dist.get_rank() if distributed else 0 # Rescale batch_size and num_workers ngpus_per_node = torch.cuda.device_count() ngpus = dist.get_world_size() if distributed else 1 batch_size = config['batch_size'] // ngpus num_workers = int( (config['num_workers'] + ngpus_per_node - 1) / ngpus_per_node) train_labelled_loader, test_loader = \ get_train_test_loaders(path=config['data_path'], batch_size=batch_size, distributed=distributed, num_workers=num_workers) model = get_model(config['model']) model = model.to(device) if distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[ local_rank, ], output_device=local_rank) optimizer = optim.SGD(model.parameters(), lr=config['learning_rate'], momentum=config['momentum'], weight_decay=config['weight_decay'], nesterov=True) criterion = nn.CrossEntropyLoss().to(device) le = len(train_labelled_loader) milestones_values = [(0, 0.0), (le * config['num_warmup_epochs'], config['learning_rate']), (le * config['num_epochs'], 0.0)] lr_scheduler = PiecewiseLinear(optimizer, param_name="lr", milestones_values=milestones_values) def _prepare_batch(batch, device, non_blocking): x, y = batch return (convert_tensor(x, device=device, non_blocking=non_blocking), convert_tensor(y, device=device, non_blocking=non_blocking)) def process_function(engine, labelled_batch): x, y = _prepare_batch(labelled_batch, device=device, non_blocking=True) model.train() # Supervised part y_pred = model(x) loss = criterion(y_pred, y) optimizer.zero_grad() loss.backward() optimizer.step() return { 'batch loss': loss.item(), } trainer = Engine(process_function) if not hasattr(lr_scheduler, "step"): trainer.add_event_handler(Events.ITERATION_STARTED, lr_scheduler) else: trainer.add_event_handler(Events.ITERATION_COMPLETED, lambda engine: lr_scheduler.step()) metric_names = [ 'batch loss', ] def output_transform(x, name): return x[name] for n in metric_names: # We compute running average values on the output (batch loss) across all devices RunningAverage(output_transform=partial(output_transform, name=n), epoch_bound=False, device=device).attach(trainer, n) if rank == 0: checkpoint_handler = ModelCheckpoint(dirname=output_path, filename_prefix="checkpoint") trainer.add_event_handler(Events.ITERATION_COMPLETED(every=1000), checkpoint_handler, { 'model': model, 'optimizer': optimizer }) ProgressBar(persist=True, bar_format="").attach(trainer, event_name=Events.EPOCH_STARTED, closing_event_name=Events.COMPLETED) if config['display_iters']: ProgressBar(persist=False, bar_format="").attach(trainer, metric_names=metric_names) tb_logger = TensorboardLogger(log_dir=output_path) tb_logger.attach(trainer, log_handler=tbOutputHandler( tag="train", metric_names=metric_names), event_name=Events.ITERATION_COMPLETED) tb_logger.attach(trainer, log_handler=tbOptimizerParamsHandler(optimizer, param_name="lr"), event_name=Events.ITERATION_STARTED) metrics = { "accuracy": Accuracy(device=device if distributed else None), "loss": Loss(criterion, device=device if distributed else None) } evaluator = create_supervised_evaluator(model, metrics=metrics, device=device, non_blocking=True) train_evaluator = create_supervised_evaluator(model, metrics=metrics, device=device, non_blocking=True) def run_validation(engine): torch.cuda.synchronize() train_evaluator.run(train_labelled_loader) evaluator.run(test_loader) trainer.add_event_handler(Events.EPOCH_STARTED(every=3), run_validation) trainer.add_event_handler(Events.COMPLETED, run_validation) if rank == 0: if config['display_iters']: ProgressBar(persist=False, desc="Train evaluation").attach(train_evaluator) ProgressBar(persist=False, desc="Test evaluation").attach(evaluator) tb_logger.attach(train_evaluator, log_handler=tbOutputHandler(tag="train", metric_names=list( metrics.keys()), another_engine=trainer), event_name=Events.COMPLETED) tb_logger.attach(evaluator, log_handler=tbOutputHandler(tag="test", metric_names=list( metrics.keys()), another_engine=trainer), event_name=Events.COMPLETED) # Store the best model def default_score_fn(engine): score = engine.state.metrics['accuracy'] return score score_function = default_score_fn if not hasattr( config, "score_function") else config.score_function best_model_handler = ModelCheckpoint( dirname=output_path, filename_prefix="best", n_saved=3, global_step_transform=global_step_from_engine(trainer), score_name="val_accuracy", score_function=score_function) evaluator.add_event_handler(Events.COMPLETED, best_model_handler, { 'model': model, }) trainer.run(train_labelled_loader, max_epochs=config['num_epochs']) if rank == 0: tb_logger.close()
def run(train_config, logger, **kwargs): logger = logging.getLogger('UDA') if getattr(train_config, 'debug', False): setup_logger(logger, logging.DEBUG) # Set Polyaxon environment if needed plx_logger = None save_dir = None output_experiment_path = None try: plx_logger = PolyaxonLogger() experiment = plx_logger.experiment save_dir = get_outputs_path() output_experiment_path = get_outputs_refs_paths() output_experiment_path = output_experiment_path['experiments'][ 0] if output_experiment_path else None logger.debug("Experiment info: {}".format( experiment.get_experiment_info())) except PolyaxonClientException as e: logger.warning('Logger Polyaxon : ' + str(e)) # Path configuration saves_dict = getattr(train_config, 'saves', {}) save_dir = saves_dict.get('save_dir', '') if save_dir is None else save_dir log_dir = os.path.join(save_dir, saves_dict.get('log_dir', '')) save_model_dir = os.path.join(save_dir, saves_dict.get('model_dir', '')) save_prediction_dir = os.path.join(save_dir, saves_dict.get('prediction_dir', '')) save_config_dir = os.path.join(save_dir, saves_dict.get('config_dir', '')) load_model_file = saves_dict.get('load_model_file', '') load_optimizer_file = saves_dict.get('load_optimizer_file', '') # Create folders create_save_folders(save_dir, saves_dict) if output_experiment_path is not None: model_dir = saves_dict.get('model_dir', '') load_model_file = os.path.join( output_experiment_path, model_dir, load_model_file) if load_model_file else None load_optimizer_file = os.path.join( output_experiment_path, model_dir, load_optimizer_file) if load_optimizer_file else None num_epochs = getattr(train_config, 'num_epochs') num_classes = getattr(train_config, 'num_classes') device = getattr(train_config, 'device', 'cpu') # Set magical acceleration if torch.cuda.is_available(): torch.backends.cudnn.benchmark = True else: assert device == 'cpu', 'CUDA device selected but none is available' # Set half precision if required use_fp_16 = getattr(train_config, 'use_fp_16', False) train1_sup_loader = getattr(train_config, 'train1_sup_loader') train1_unsup_loader = getattr(train_config, 'train1_unsup_loader') train2_unsup_loader = getattr(train_config, 'train2_unsup_loader') test_loader = getattr(train_config, 'test_loader') save_interval = saves_dict.get('save_interval', 0) n_saved = saves_dict.get('n_saved', 0) val_interval = getattr(train_config, 'val_interval', 1) pred_interval = getattr(train_config, 'pred_interval', 0) model = getattr(train_config, 'model').to(device) optimizer = getattr(train_config, 'optimizer') criterion = getattr(train_config, 'criterion').to(device) consistency_criterion = getattr(train_config, 'consistency_criterion').to(device) cm_metric = getattr( train_config, 'cm_metric', ConfusionMatrix(num_classes=num_classes, output_transform=lambda x: (x['y_pred'], x['y']))) # AMP initialization for half precision if use_fp_16: assert 'cuda' in device assert torch.backends.cudnn.enabled, "NVIDIA/Apex:Amp requires cudnn backend to be enabled." try: from apex import amp except: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to run this example." ) # Initialize amp model, optimizer = amp.initialize(model, optimizer, opt_level="O2") # Load checkpoint load_params(model, optimizer=optimizer, model_file=load_model_file, optimizer_file=load_optimizer_file, device_name=device) # Add batch norm is_bn = getattr(train_config, 'is_bn', False) if is_bn: batch_norm = nn.BatchNorm2d(3).to(device) if use_fp_16: batch_norm = amp.initialize(batch_norm) batch_norm.reset_parameters() model = nn.Sequential(batch_norm, model) # Copy the config file shutil.copy2(os.path.abspath(train_config.__file__), os.path.join(save_config_dir, 'checkpoint_module.py')) le = len(train1_sup_loader) num_train_steps = le * num_epochs mlflow.log_param("num train steps", num_train_steps) lr = getattr(train_config, 'learning_rate') num_warmup_steps = getattr(train_config, 'num_warmup_steps', 0) lr_scheduler = getattr(train_config, 'lr_scheduler', None) if lr_scheduler is not None: lr_scheduler = lr_scheduler(optimizer) if num_warmup_steps > 0: lr_scheduler = create_lr_scheduler_with_warmup( lr_scheduler, warmup_start_value=0.0, warmup_end_value=lr * (1.0 + 1.0 / num_warmup_steps), warmup_duration=num_warmup_steps) train1_sup_loader_iter = cycle(train1_sup_loader) train1_unsup_loader_iter = cycle(train1_unsup_loader) train2_unsup_loader_iter = cycle(train2_unsup_loader) # Reduce on plateau reduce_on_plateau = getattr(train_config, 'reduce_on_plateau', None) # Output transform model output_transform_model = getattr(train_config, 'output_transform_model', lambda x: x) inference_fn = getattr(train_config, 'inference_fn', inference_standard) lam = getattr(train_config, 'consistency_lambda') beta = getattr(train_config, 'consistency_beta', lam) tsa = TrainingSignalAnnealing( num_steps=num_train_steps, min_threshold=getattr(train_config, 'TSA_proba_min'), max_threshold=getattr(train_config, 'TSA_proba_max')) with_tsa = getattr(train_config, 'with_TSA', False) cfg = { 'tsa': tsa, 'lambda': lam, 'beta': beta, 'with_tsa': with_tsa, 'device': device, 'consistency_criterion': consistency_criterion, 'criterion': criterion } trainer = Engine( partial(train_update_function, model=model, optimizer=optimizer, cfg=cfg, train1_sup_loader_iter=train1_sup_loader_iter, train1_unsup_loader_iter=train1_unsup_loader_iter, train2_unsup_loader_iter=train2_unsup_loader_iter, output_transform_model=output_transform_model, use_fp_16=use_fp_16)) # Register events for e in CustomEvents: State.event_to_attr[e] = 'iteration' trainer.register_events(*CustomEvents) if with_tsa: trainer.add_event_handler(Events.ITERATION_COMPLETED, log_tsa, tsa) if lr_scheduler is not None: if not hasattr(lr_scheduler, "step"): trainer.add_event_handler(Events.ITERATION_STARTED, lr_scheduler) else: trainer.add_event_handler(Events.ITERATION_STARTED, lambda engine: lr_scheduler.step()) trainer.add_event_handler(Events.ITERATION_COMPLETED, log_learning_rate, optimizer) metric_names = [ 'supervised batch loss', 'consistency batch loss', 'final batch loss' ] def output_transform(x, name): return x[name] for n in metric_names: RunningAverage( output_transform=partial(output_transform, name=n)).attach( trainer, n) ProgressBar(persist=True, bar_format="").attach(trainer, event_name=Events.EPOCH_STARTED, closing_event_name=Events.COMPLETED) # Handlers for Tensorboard logging tb_logger = TensorboardLogger(log_dir=log_dir) tb_logger.attach(trainer, log_handler=tbOutputHandler(tag="train", metric_names=metric_names), event_name=CustomEvents.ITERATION_K_COMPLETED) tb_logger.attach(trainer, log_handler=tbOptimizerParamsHandler(optimizer, param_name="lr"), event_name=CustomEvents.ITERATION_K_STARTED) # Handlers for Polyaxon logging if plx_logger is not None: plx_logger.attach(trainer, log_handler=plxOutputHandler( tag="train", metric_names=metric_names), event_name=CustomEvents.ITERATION_K_COMPLETED) metrics = { 'loss': Loss(criterion, output_transform=lambda x: (x['y_pred'], x['y'])), 'mAcc': cmAccuracy(cm_metric).mean(), 'mPr': cmPrecision(cm_metric).mean(), 'mRe': cmRecall(cm_metric).mean(), 'mIoU': mIoU(cm_metric), 'mF1': cmFbeta(cm_metric, 1).mean() } iou = IoU(cm_metric) for i in range(num_classes): key_name = 'IoU_{}'.format(str(i)) metrics[key_name] = iou[i] inference_update_fn = partial( inference_update_function, model=model, cfg=cfg, output_transform_model=output_transform_model, inference_fn=inference_fn) evaluator = Engine(inference_update_fn) train_evaluator = Engine(inference_update_fn) for name, metric in metrics.items(): metric.attach(train_evaluator, name) metric.attach(evaluator, name) # Add checkpoint if save_model_dir: checkpoint = ModelCheckpoint(dirname=save_model_dir, filename_prefix='checkpoint', save_interval=save_interval, n_saved=n_saved, create_dir=True) trainer.add_event_handler(Events.EPOCH_COMPLETED, checkpoint, { 'mymodel': model, 'optimizer': optimizer }) def trigger_k_iteration_started(engine, k): if engine.state.iteration % k == 0: engine.fire_event(CustomEvents.ITERATION_K_STARTED) def trigger_k_iteration_completed(engine, k): if engine.state.iteration % k == 0: engine.fire_event(CustomEvents.ITERATION_K_COMPLETED) def run_validation(engine, validation_interval): if (trainer.state.epoch - 1) % validation_interval == 0: train_evaluator.run(train1_sup_loader) evaluator.run(test_loader) if save_prediction_dir: train_output = train_evaluator.state.output test_output = evaluator.state.output iteration = str(trainer.state.iteration) epoch = str(trainer.state.epoch) save_prediction('train_{}_{}'.format(iteration, epoch), save_prediction_dir, train_output['x'], torch.argmax( train_output['y_pred'][0, :, :, :], dim=0), y=train_output['y'][0, :, :]) save_prediction('test_{}_{}'.format(iteration, epoch), save_prediction_dir, test_output['x'], torch.argmax(test_output['y_pred'][0, :, :, :], dim=0), y=test_output['y'][0, :, :]) train_evaluator.state.output = None evaluator.state.output = None if reduce_on_plateau is not None: reduce_on_plateau.step(evaluator.state.metrics['mIoU']) trainer.add_event_handler(Events.ITERATION_STARTED, trigger_k_iteration_started, k=10) trainer.add_event_handler(Events.ITERATION_COMPLETED, trigger_k_iteration_completed, k=10) trainer.add_event_handler(Events.EPOCH_STARTED, run_validation, validation_interval=val_interval) trainer.add_event_handler(Events.COMPLETED, run_validation, validation_interval=1) def trainer_prediction_save(engine, prediction_interval): if (engine.state.iteration - 1) % prediction_interval == 0: if save_prediction_dir: trainer_output = trainer.state.output['unsup pred'] iteration = str(trainer.state.iteration) epoch = str(trainer.state.epoch) save_prediction('trainer_{}_{}'.format(iteration, epoch), save_prediction_dir, trainer_output['x'], trainer_output['y_pred']) logger.debug( 'Saved trainer prediction for iteration {}'.format( str(engine.state.iteration))) trainer.state.output = None trainer.add_event_handler(Events.ITERATION_COMPLETED, trainer_prediction_save, prediction_interval=pred_interval) tb_logger.attach(train_evaluator, log_handler=tbOutputHandler(tag="train", metric_names=list( metrics.keys())), event_name=Events.EPOCH_COMPLETED) tb_logger.attach(evaluator, log_handler=tbOutputHandler(tag="test", metric_names=list( metrics.keys())), event_name=Events.EPOCH_COMPLETED) # Handlers for Polyaxon logging if plx_logger is not None: plx_logger.attach(train_evaluator, log_handler=plxOutputHandler(tag="train", metric_names=list( metrics.keys())), event_name=Events.EPOCH_COMPLETED) plx_logger.attach(evaluator, log_handler=plxOutputHandler(tag="test", metric_names=list( metrics.keys())), event_name=Events.EPOCH_COMPLETED) trainer.add_event_handler(Events.ITERATION_COMPLETED, mlflow_batch_metrics_logging, "train", trainer) train_evaluator.add_event_handler(Events.COMPLETED, mlflow_val_metrics_logging, "train", trainer) evaluator.add_event_handler(Events.COMPLETED, mlflow_val_metrics_logging, "test", trainer) data_steps = list(range(len(train1_sup_loader))) logger.debug('Start training') trainer.run(data_steps, max_epochs=num_epochs) logger.debug('Finished training')
def run(output_path, config): device = "cuda" batch_size = config['batch_size'] train_loader, test_loader = get_train_test_loaders( dataset_name=config['dataset'], path=config['data_path'], batch_size=batch_size, num_workers=config['num_workers']) model = get_model(config['model']) model = model.to(device) optim_fn = optim.SGD if config['with_layca']: optim_fn = LaycaSGD optimizer = optim_fn(model.parameters(), lr=0.0, momentum=config['momentum'], weight_decay=config['weight_decay'], nesterov=True) criterion = nn.CrossEntropyLoss() le = len(train_loader) milestones_values = [(le * m, v) for m, v in config['lr_milestones_values']] scheduler = PiecewiseLinear(optimizer, "lr", milestones_values=milestones_values) def _prepare_batch(batch, device, non_blocking): x, y = batch return (convert_tensor(x, device=device, non_blocking=non_blocking), convert_tensor(y, device=device, non_blocking=non_blocking)) def process_function(engine, batch): x, y = _prepare_batch(batch, device=device, non_blocking=True) model.train() y_pred = model(x) loss = criterion(y_pred, y) optimizer.zero_grad() loss.backward() optimizer.step() return loss.item() trainer = Engine(process_function) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) RunningAverage(output_transform=lambda x: x, epoch_bound=False).attach(trainer, 'batchloss') ProgressBar(persist=True, bar_format="").attach(trainer, event_name=Events.EPOCH_STARTED, closing_event_name=Events.COMPLETED) tb_logger = TensorboardLogger(log_dir=output_path) tb_logger.attach(trainer, log_handler=tbOutputHandler(tag="train", metric_names='all'), event_name=Events.ITERATION_COMPLETED) tb_logger.attach(trainer, log_handler=tbOptimizerParamsHandler(optimizer, param_name="lr"), event_name=Events.ITERATION_STARTED) tb_logger.attach(trainer, log_handler=LayerRotationStatsHandler(model), event_name=Events.EPOCH_STARTED) metrics = { "accuracy": Accuracy(), } evaluator = create_supervised_evaluator(model, metrics=metrics, device=device, non_blocking=True) train_evaluator = create_supervised_evaluator(model, metrics=metrics, device=device, non_blocking=True) def run_validation(engine, val_interval): if (engine.state.epoch - 1) % val_interval == 0: train_evaluator.run(train_loader) evaluator.run(test_loader) trainer.add_event_handler(Events.EPOCH_COMPLETED, run_validation, val_interval=2) trainer.add_event_handler(Events.COMPLETED, run_validation, val_interval=1) tb_logger.attach(train_evaluator, log_handler=tbOutputHandler(tag="train", metric_names='all', another_engine=trainer), event_name=Events.COMPLETED) tb_logger.attach(evaluator, log_handler=tbOutputHandler(tag="test", metric_names='all', another_engine=trainer), event_name=Events.COMPLETED) def mlflow_batch_metrics_logging(engine, tag): step = trainer.state.iteration for name, value in engine.state.metrics.items(): mlflow.log_metric("{} {}".format(tag, name), value, step=step) def mlflow_val_metrics_logging(engine, tag): step = trainer.state.epoch for name in metrics.keys(): value = engine.state.metrics[name] mlflow.log_metric("{} {}".format(tag, name), value, step=step) trainer.add_event_handler(Events.ITERATION_COMPLETED, mlflow_batch_metrics_logging, "train") train_evaluator.add_event_handler(Events.COMPLETED, mlflow_val_metrics_logging, "train") evaluator.add_event_handler(Events.COMPLETED, mlflow_val_metrics_logging, "test") trainer.run(train_loader, max_epochs=config['num_epochs']) tb_logger.close()
def run(output_path, config): device = "cuda" batch_size = config['batch_size'] train_labelled_loader, train_unlabelled_loader, test_loader = \ get_train_test_loaders(dataset_name=config['dataset'], num_labelled_samples=config['num_labelled_samples'], path=config['data_path'], batch_size=batch_size, unlabelled_batch_size=config.get('unlabelled_batch_size', None), num_workers=config['num_workers']) model = get_model(config['model']) model = model.to(device) optimizer = optim.SGD(model.parameters(), lr=config['learning_rate'], momentum=config['momentum'], weight_decay=config['weight_decay'], nesterov=True) with_SWA = config['with_SWA'] if with_SWA: optimizer = torchcontrib.optim.SWA(optimizer) criterion = nn.CrossEntropyLoss().to(device) if config['consistency_criterion'] == "MSE": consistency_criterion = nn.MSELoss() elif config['consistency_criterion'] == "KL": consistency_criterion = nn.KLDivLoss(reduction='batchmean') else: raise RuntimeError("Unknown consistency criterion {}".format( config['consistency_criterion'])) consistency_criterion = consistency_criterion.to(device) le = len(train_labelled_loader) num_train_steps = le * config['num_epochs'] mlflow.log_param("num train steps", num_train_steps) lr = config['learning_rate'] eta_min = lr * config['min_lr_ratio'] num_warmup_steps = config['num_warmup_steps'] lr_scheduler = CosineAnnealingLR(optimizer, eta_min=eta_min, T_max=num_train_steps - num_warmup_steps) if num_warmup_steps > 0: lr_scheduler = create_lr_scheduler_with_warmup( lr_scheduler, warmup_start_value=0.0, warmup_end_value=lr * (1.0 + 1.0 / num_warmup_steps), warmup_duration=num_warmup_steps) def _prepare_batch(batch, device, non_blocking): x, y = batch return (convert_tensor(x, device=device, non_blocking=non_blocking), convert_tensor(y, device=device, non_blocking=non_blocking)) def cycle(iterable): while True: for i in iterable: yield i train_unlabelled_loader_iter = cycle(train_unlabelled_loader) lam = config['consistency_lambda'] tsa = TrainingSignalAnnealing(num_steps=num_train_steps, min_threshold=config['TSA_proba_min'], max_threshold=config['TSA_proba_max']) with_tsa = config['with_TSA'] with_UDA = not config['no_UDA'] def uda_process_function(engine, labelled_batch): x, y = _prepare_batch(labelled_batch, device=device, non_blocking=True) if with_UDA: unsup_x, unsup_aug_x = next(train_unlabelled_loader_iter) unsup_x = convert_tensor(unsup_x, device=device, non_blocking=True) unsup_aug_x = convert_tensor(unsup_aug_x, device=device, non_blocking=True) model.train() # Supervised part y_pred = model(x) loss = criterion(y_pred, y) supervised_loss = loss step = engine.state.iteration - 1 if with_tsa and with_UDA: new_y_pred, new_y = tsa(y_pred, y, step=step) new_loss = criterion(new_y_pred, new_y) engine.state.tsa_log = { "new_y_pred": new_y_pred, "loss": loss.item(), "tsa_loss": new_loss.item() } supervised_loss = new_loss # Unsupervised part if with_UDA: unsup_orig_y_pred = model(unsup_x).detach() unsup_orig_y_probas = torch.softmax(unsup_orig_y_pred, dim=-1) unsup_aug_y_pred = model(unsup_aug_x) unsup_aug_y_probas = torch.log_softmax(unsup_aug_y_pred, dim=-1) consistency_loss = consistency_criterion(unsup_aug_y_probas, unsup_orig_y_probas) final_loss = supervised_loss if with_UDA: final_loss += lam * consistency_loss optimizer.zero_grad() final_loss.backward() optimizer.step() return { 'supervised batch loss': supervised_loss.item(), 'consistency batch loss': consistency_loss.item() if with_UDA else 0.0, 'final batch loss': final_loss.item(), } trainer = Engine(uda_process_function) if with_UDA and with_tsa: @trainer.on(Events.ITERATION_COMPLETED) def log_tsa(engine): step = engine.state.iteration - 1 if step % 50 == 0: mlflow.log_metric("TSA threshold", tsa.thresholds[step].item(), step=step) mlflow.log_metric("TSA selection", engine.state.tsa_log['new_y_pred'].shape[0], step=step) mlflow.log_metric("Original X Loss", engine.state.tsa_log['loss'], step=step) mlflow.log_metric("TSA X Loss", engine.state.tsa_log['tsa_loss'], step=step) if not hasattr(lr_scheduler, "step"): trainer.add_event_handler(Events.ITERATION_STARTED, lr_scheduler) else: trainer.add_event_handler(Events.ITERATION_STARTED, lambda engine: lr_scheduler.step()) @trainer.on(Events.ITERATION_STARTED) def log_learning_rate(engine): step = engine.state.iteration - 1 if step % 50 == 0: lr = optimizer.param_groups[0]['lr'] mlflow.log_metric("learning rate", lr, step=step) if with_SWA: @trainer.on(Events.COMPLETED) def swap_swa_sgd(engine): optimizer.swap_swa_sgd() optimizer.bn_update(train_labelled_loader, model) @trainer.on(Events.EPOCH_COMPLETED) def update_swa(engine): if engine.state.epoch - 1 > int(num_epochs * 0.75): optimizer.update_swa() metric_names = [ 'supervised batch loss', 'consistency batch loss', 'final batch loss' ] def output_transform(x, name): return x[name] for n in metric_names: RunningAverage(output_transform=partial(output_transform, name=n), epoch_bound=False).attach(trainer, n) ProgressBar(persist=True, bar_format="").attach(trainer, event_name=Events.EPOCH_STARTED, closing_event_name=Events.COMPLETED) tb_logger = TensorboardLogger(log_dir=output_path) tb_logger.attach(trainer, log_handler=tbOutputHandler(tag="train", metric_names=[ 'final batch loss', 'consistency batch loss', 'supervised batch loss' ]), event_name=Events.ITERATION_COMPLETED) tb_logger.attach(trainer, log_handler=tbOptimizerParamsHandler(optimizer, param_name="lr"), event_name=Events.ITERATION_STARTED) metrics = { "accuracy": Accuracy(), } evaluator = create_supervised_evaluator(model, metrics=metrics, device=device, non_blocking=True) train_evaluator = create_supervised_evaluator(model, metrics=metrics, device=device, non_blocking=True) def run_validation(engine, val_interval): if (engine.state.epoch - 1) % val_interval == 0: train_evaluator.run(train_labelled_loader) evaluator.run(test_loader) trainer.add_event_handler(Events.EPOCH_STARTED, run_validation, val_interval=2) trainer.add_event_handler(Events.COMPLETED, run_validation, val_interval=1) tb_logger.attach(train_evaluator, log_handler=tbOutputHandler(tag="train", metric_names=list( metrics.keys()), another_engine=trainer), event_name=Events.COMPLETED) tb_logger.attach(evaluator, log_handler=tbOutputHandler(tag="test", metric_names=list( metrics.keys()), another_engine=trainer), event_name=Events.COMPLETED) def mlflow_batch_metrics_logging(engine, tag): step = trainer.state.iteration for name, value in engine.state.metrics.items(): mlflow.log_metric("{} {}".format(tag, name), value, step=step) def mlflow_val_metrics_logging(engine, tag): step = trainer.state.epoch for name in metrics.keys(): value = engine.state.metrics[name] mlflow.log_metric("{} {}".format(tag, name), value, step=step) trainer.add_event_handler(Events.ITERATION_COMPLETED, mlflow_batch_metrics_logging, "train") train_evaluator.add_event_handler(Events.COMPLETED, mlflow_val_metrics_logging, "train") evaluator.add_event_handler(Events.COMPLETED, mlflow_val_metrics_logging, "test") trainer.run(train_labelled_loader, max_epochs=config['num_epochs'])