コード例 #1
0
    def _test(y_pred, y, batch_size, metric_device):

        metric_device = torch.device(metric_device)
        prc = PrecisionRecallCurve(device=metric_device)

        torch.manual_seed(10 + rank)

        prc.reset()
        if batch_size > 1:
            n_iters = y.shape[0] // batch_size + 1
            for i in range(n_iters):
                idx = i * batch_size
                prc.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size]))
        else:
            prc.update((y_pred, y))

        # gather y_pred, y
        y_pred = idist.all_gather(y_pred)
        y = idist.all_gather(y)

        np_y = y.cpu().numpy()
        np_y_pred = y_pred.cpu().numpy()

        res = prc.compute()

        assert isinstance(res, Tuple)
        assert precision_recall_curve(np_y, np_y_pred)[0] == pytest.approx(res[0].cpu().numpy())
        assert precision_recall_curve(np_y, np_y_pred)[1] == pytest.approx(res[1].cpu().numpy())
        assert precision_recall_curve(np_y, np_y_pred)[2] == pytest.approx(res[2].cpu().numpy())
コード例 #2
0
def test_no_sklearn(mock_no_sklearn):
    with pytest.raises(
            RuntimeError,
            match=r"This contrib module requires sklearn to be installed."):
        y = torch.tensor([1, 1])
        pr_curve = PrecisionRecallCurve()
        pr_curve.update((y, y))
        pr_curve.compute()
コード例 #3
0
def test_check_compute_fn():
    y_pred = torch.zeros((8, 13))
    y_pred[:, 1] = 1
    y_true = torch.zeros_like(y_pred)
    output = (y_pred, y_true)

    em = PrecisionRecallCurve(check_compute_fn=True)

    em.reset()
    with pytest.warns(EpochMetricWarning, match=r"Probably, there can be a problem with `compute_fn`"):
        em.update(output)

    em = PrecisionRecallCurve(check_compute_fn=False)
    em.update(output)
コード例 #4
0
def test_precision_recall_curve():
    size = 100
    np_y_pred = np.random.rand(size, 1)
    np_y = np.zeros((size,), dtype=np.long)
    np_y[size // 2 :] = 1
    sk_precision, sk_recall, sk_thresholds = precision_recall_curve(np_y, np_y_pred)

    precision_recall_curve_metric = PrecisionRecallCurve()
    y_pred = torch.from_numpy(np_y_pred)
    y = torch.from_numpy(np_y)

    precision_recall_curve_metric.update((y_pred, y))
    precision, recall, thresholds = precision_recall_curve_metric.compute()

    assert np.array_equal(precision, sk_precision)
    assert np.array_equal(recall, sk_recall)
    # assert thresholds almost equal, due to numpy->torch->numpy conversion
    np.testing.assert_array_almost_equal(thresholds, sk_thresholds)
コード例 #5
0
def test_precision_recall_curve():
    size = 100
    np_y_pred = np.random.rand(size, 1)
    np_y = np.zeros((size,))
    np_y[size // 2 :] = 1
    sk_precision, sk_recall, sk_thresholds = precision_recall_curve(np_y, np_y_pred)

    precision_recall_curve_metric = PrecisionRecallCurve()
    y_pred = torch.from_numpy(np_y_pred)
    y = torch.from_numpy(np_y)

    precision_recall_curve_metric.update((y_pred, y))
    precision, recall, thresholds = precision_recall_curve_metric.compute()
    precision = precision.numpy()
    recall = recall.numpy()
    thresholds = thresholds.numpy()

    assert pytest.approx(precision) == sk_precision
    assert pytest.approx(recall) == sk_recall
    # assert thresholds almost equal, due to numpy->torch->numpy conversion
    np.testing.assert_array_almost_equal(thresholds, sk_thresholds)