コード例 #1
0
def test_zero_sample():
    m = GeometricMeanAbsoluteError()
    with pytest.raises(
            NotComputableError,
            match=
            r"GeometricMeanAbsoluteError must have at least one example before it can be computed"
    ):
        m.compute()
コード例 #2
0
def test_compute():
    a = np.random.randn(4)
    b = np.random.randn(4)
    c = np.random.randn(4)
    d = np.random.randn(4)
    ground_truth = np.random.randn(4)
    np_prod = 1.0

    m = GeometricMeanAbsoluteError()
    m.update((torch.from_numpy(a), torch.from_numpy(ground_truth)))

    errors = np.abs(ground_truth - a)
    np_prod = np.multiply.reduce(errors) * np_prod
    np_len = len(a)
    np_ans = np.power(np_prod, 1.0 / np_len)
    assert m.compute() == pytest.approx(np_ans)

    m.update((torch.from_numpy(b), torch.from_numpy(ground_truth)))
    errors = np.abs(ground_truth - b)
    np_prod = np.multiply.reduce(errors) * np_prod
    np_len += len(b)
    np_ans = np.power(np_prod, 1.0 / np_len)
    assert m.compute() == pytest.approx(np_ans)

    m.update((torch.from_numpy(c), torch.from_numpy(ground_truth)))
    errors = np.abs(ground_truth - c)
    np_prod = np.multiply.reduce(errors) * np_prod
    np_len += len(c)
    np_ans = np.power(np_prod, 1.0 / np_len)
    assert m.compute() == pytest.approx(np_ans)

    m.update((torch.from_numpy(d), torch.from_numpy(ground_truth)))
    errors = np.abs(ground_truth - d)
    np_prod = np.multiply.reduce(errors) * np_prod
    np_len += len(d)
    np_ans = np.power(np_prod, 1.0 / np_len)
    assert m.compute() == pytest.approx(np_ans)
コード例 #3
0
    def _test(metric_device):
        metric_device = torch.device(metric_device)
        m = GeometricMeanAbsoluteError(device=metric_device)
        torch.manual_seed(10 + rank)

        y_pred = torch.randint(0, 10, size=(10, ), device=device).float()
        y = torch.randint(0, 10, size=(10, ), device=device).float()

        m.update((y_pred, y))

        # gather y_pred, y
        y_pred = idist.all_gather(y_pred)
        y = idist.all_gather(y)

        np_y_pred = y_pred.cpu().numpy()
        np_y = y.cpu().numpy()

        res = m.compute()

        sum_errors = (np.log(np.abs(np_y - np_y_pred))).sum()
        np_len = len(y_pred)
        np_ans = np.exp(sum_errors / np_len)

        assert np_ans == pytest.approx(res)
コード例 #4
0
def test_zero_div():
    m = GeometricMeanAbsoluteError()
    with pytest.raises(NotComputableError):
        m.compute()