def test_wrong_input_shapes(): m = GeometricMeanRelativeAbsoluteError() with pytest.raises( ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4, 1, 2), torch.rand(4, 1))) with pytest.raises( ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4, 1), torch.rand(4, 1, 2))) with pytest.raises( ValueError, match=r"Input data shapes should be the same, but given"): m.update(( torch.rand(4, 1, 2), torch.rand(4, ), )) with pytest.raises( ValueError, match=r"Input data shapes should be the same, but given"): m.update(( torch.rand(4, ), torch.rand(4, 1, 2), ))
def test_integration(): y_pred = torch.rand(size=(100,)) y = torch.rand(size=(100,)) batch_size = 10 def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) m = GeometricMeanRelativeAbsoluteError() m.attach(engine, "gmrae") np_y = y.numpy().ravel() np_y_pred = y_pred.numpy().ravel() data = list(range(y_pred.shape[0] // batch_size)) gmrae = engine.run(data, max_epochs=1).metrics["gmrae"] sum_errors = np.log(np.abs(np_y - np_y_pred) / np.abs(np_y - np_y.mean())).sum() np_len = len(y_pred) np_ans = np.exp(sum_errors / np_len) assert np_ans == pytest.approx(gmrae)
def test_zero_sample(): m = GeometricMeanRelativeAbsoluteError() with pytest.raises( NotComputableError, match=r"GeometricMeanRelativeAbsoluteError must have at least one example before it can be computed", ): m.compute()
def _test(n_epochs, metric_device): metric_device = torch.device(metric_device) n_iters = 80 s = 16 n_classes = 2 offset = n_iters * s y_true = torch.rand(size=(offset * idist.get_world_size(),)).to(device) y_preds = torch.rand(size=(offset * idist.get_world_size(),)).to(device) def update(engine, i): return ( y_preds[i * s + rank * offset : (i + 1) * s + rank * offset], y_true[i * s + rank * offset : (i + 1) * s + rank * offset], ) engine = Engine(update) gmrae = GeometricMeanRelativeAbsoluteError(device=metric_device) gmrae.attach(engine, "gmrae") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) assert "gmrae" in engine.state.metrics res = engine.state.metrics["gmrae"] np_y = y_true.cpu().numpy() np_y_pred = y_preds.cpu().numpy() np_gmrae = np.exp(np.log(np.abs(np_y - np_y_pred) / np.abs(np_y - np_y.mean())).mean()) assert pytest.approx(res, rel=1e-4) == np_gmrae
def test_wrong_input_shapes(): m = GeometricMeanRelativeAbsoluteError() with pytest.raises(ValueError): m.update((torch.rand(4, 1, 2), torch.rand(4, 1))) with pytest.raises(ValueError): m.update((torch.rand(4, 1), torch.rand(4, 1, 2))) with pytest.raises(ValueError): m.update((torch.rand(4, 1, 2), torch.rand(4, ))) with pytest.raises(ValueError): m.update((torch.rand(4, ), torch.rand(4, 1, 2)))
def test_integration_geometric_mean_relative_absolute_error_with_output_transform( ): np.random.seed(1) size = 105 np_y_pred = np.random.rand(size, 1) np_y = np.random.rand(size, 1) np.random.shuffle(np_y) np_y_sum = 0 num_examples = 0 num_sum_of_errors = 0 np_gmrae = 0 n_iters = 15 batch_size = size // n_iters for i in range(n_iters + 1): idx = i * batch_size np_y_i = np_y[idx:idx + batch_size] np_y_pred_i = np_y_pred[idx:idx + batch_size] np_y_sum += np_y_i.sum() num_examples += np_y_i.shape[0] np_mean = np_y_sum / num_examples np_gmrae += np.log( np.abs(np_y_i - np_y_pred_i) / np.abs(np_y_i - np_mean)).sum() def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx:idx + batch_size] y_pred_batch = np_y_pred[idx:idx + batch_size] return idx, torch.from_numpy(y_pred_batch), torch.from_numpy( y_true_batch) engine = Engine(update_fn) m = GeometricMeanRelativeAbsoluteError( output_transform=lambda x: (x[1], x[2])) m.attach(engine, "geometric_mean_relative_absolute_error") data = list(range(size // batch_size)) gmrae = engine.run( data, max_epochs=1).metrics["geometric_mean_relative_absolute_error"] assert np.exp(np_gmrae / num_examples) == pytest.approx(m.compute())
def test_geometric_mean_relative_absolute_error_2(): np.random.seed(1) size = 105 np_y_pred = np.random.rand(size, 1) np_y = np.random.rand(size, 1) np.random.shuffle(np_y) np_y_sum = 0 num_examples = 0 num_sum_of_errors = 0 np_gmrae = 0 m = GeometricMeanRelativeAbsoluteError() y_pred = torch.from_numpy(np_y_pred) y = torch.from_numpy(np_y) m.reset() n_iters = 15 batch_size = size // n_iters for i in range(n_iters + 1): idx = i * batch_size np_y_i = np_y[idx:idx + batch_size] np_y_pred_i = np_y_pred[idx:idx + batch_size] np_y_sum += np_y_i.sum() num_examples += np_y_i.shape[0] np_mean = np_y_sum / num_examples np_gmrae += np.log( np.abs(np_y_i - np_y_pred_i) / np.abs(np_y_i - np_mean)).sum() m.update((y_pred[idx:idx + batch_size], y[idx:idx + batch_size])) assert np.exp(np_gmrae / num_examples) == pytest.approx(m.compute())
def _test(metric_device): metric_device = torch.device(metric_device) m = GeometricMeanRelativeAbsoluteError(device=metric_device) torch.manual_seed(10 + rank) y_pred = torch.rand(size=(100,), device=device) y = torch.rand(size=(100,), device=device) m.update((y_pred, y)) y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y = y.cpu().numpy() np_y_pred = y_pred.cpu().numpy() np_gmrae = np.exp(np.log(np.abs(np_y - np_y_pred) / np.abs(np_y - np_y.mean())).mean()) assert m.compute() == pytest.approx(np_gmrae, rel=1e-4)
def test_compute(): size = 51 np_y_pred = np.random.rand(size,) np_y = np.random.rand(size,) np_gmrae = np.exp(np.log(np.abs(np_y - np_y_pred) / np.abs(np_y - np_y.mean())).mean()) m = GeometricMeanRelativeAbsoluteError() y_pred = torch.from_numpy(np_y_pred) y = torch.from_numpy(np_y) m.reset() m.update((y_pred, y)) assert np_gmrae == pytest.approx(m.compute())