def test_zero_div(): a = torch.tensor([2.0, -1.0, -1.0, 2.0]) ground_truth = torch.tensor([0.0, 0.5, 0.2, 1.0]) m = MeanAbsoluteRelativeError() with raises(NotComputableError): m.update((a, ground_truth))
def test_wrong_input_shapes(): m = MeanAbsoluteRelativeError() with raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4), torch.rand(4, 1))) with raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4, 1), torch.rand(4,)))
def test_wrong_input_shapes(): m = MeanAbsoluteRelativeError() with raises(ValueError): m.update((torch.rand(4, 1, 2), torch.rand(4, 1))) with raises(ValueError): m.update((torch.rand(4, 1), torch.rand(4, 1, 2))) with raises(ValueError): m.update((torch.rand(4, 1, 2), torch.rand(4,))) with raises(ValueError): m.update((torch.rand(4,), torch.rand(4, 1, 2)))
def _test(metric_device): metric_device = torch.device(metric_device) m = MeanAbsoluteRelativeError(device=metric_device) torch.manual_seed(10 + rank) y_pred = torch.randint(1, 11, size=(10,), device=device).float() y = torch.randint(1, 11, size=(10,), device=device).float() m.update((y_pred, y)) # gather y_pred, y y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y_pred = y_pred.cpu().numpy() np_y = y.cpu().numpy() res = m.compute() abs_error = np.sum(abs(np_y - np_y_pred) / abs(np_y)) num_samples = len(y_pred) np_res = abs_error / num_samples assert np_res == approx(res)
def test_mean_absolute_relative_error(): a = torch.rand(4) b = torch.rand(4) c = torch.rand(4) d = torch.rand(4) ground_truth = torch.rand(4) m = MeanAbsoluteRelativeError() m.update((a, ground_truth)) abs_error_a = torch.sum( torch.abs(ground_truth - a) / torch.abs(ground_truth)) num_samples_a = a.size()[0] sum_error = abs_error_a sum_samples = num_samples_a MARE_a = sum_error / sum_samples assert m.compute() == approx(MARE_a.item()) m.update((b, ground_truth)) abs_error_b = torch.sum( torch.abs(ground_truth - b) / torch.abs(ground_truth)) num_samples_b = b.size()[0] sum_error += abs_error_b sum_samples += num_samples_b MARE_b = sum_error / sum_samples assert m.compute() == approx(MARE_b.item()) m.update((c, ground_truth)) abs_error_c = torch.sum( torch.abs(ground_truth - c) / torch.abs(ground_truth)) num_samples_c = c.size()[0] sum_error += abs_error_c sum_samples += num_samples_c MARE_c = sum_error / sum_samples assert m.compute() == approx(MARE_c.item()) m.update((d, ground_truth)) abs_error_d = torch.sum( torch.abs(ground_truth - d) / torch.abs(ground_truth)) num_samples_d = d.size()[0] sum_error += abs_error_d sum_samples += num_samples_d MARE_d = sum_error / sum_samples assert m.compute() == approx(MARE_d.item())