コード例 #1
0
    def testConsistencyOfBases(self):
        m = 6
        sa = iisignature.rotinv2dprepare(m, "a")
        sk = iisignature.rotinv2dprepare(m, "k")
        ca = iisignature.rotinv2dcoeffs(sa)[-1]
        ck = iisignature.rotinv2dcoeffs(sk)[-1]

        #every row of ck should be in the span of the rows of ca
        #i.e.  every column of ck.T should be in the span of the columns of
        #ca.T
        #i.e.  there's a matrix b s.t.  ca.T b = ck.T
        residuals = lstsq(ca.T, ck.T)[1]
        self.assertLess(numpy.max(numpy.abs(residuals)), 0.000001)

        sq = iisignature.rotinv2dprepare(m, "q")
        cq = iisignature.rotinv2dcoeffs(sq)[-1]
        ss = iisignature.rotinv2dprepare(m, "s")
        cs = iisignature.rotinv2dcoeffs(ss)[-1]
        # every row of cs and cq should be in the span of the rows of ca
        residuals2 = lstsq(ca.T, cs.T)[1]
        self.assertLess(numpy.max(numpy.abs(residuals2)), 0.000001)
        residuals2 = lstsq(ca.T, cq.T)[1]
        self.assertLess(numpy.max(numpy.abs(residuals2)), 0.000001)

        self.assertEqual(cq.shape, cs.shape)

        #check that the invariants are linearly independent (not for k)
        for c, name in ((cs, "s"), (ca, "a"), (cq, "q")):
            self.assertEqual(numpy.linalg.matrix_rank(c), c.shape[0], name)

        #check that rows with nonzeros in evil columns are all before
        #rows with nonzeros in odious columns
        #print ((numpy.abs(ca)>0.00000001).astype("int8"))
        for c, name in ((cs, "s"), (ck, "k"), (ca, "a"), (cq, "q")):
            evilRows = []
            odiousRows = []
            for i in range(c.shape[0]):
                evil = 0
                odious = 0
                for j in range(c.shape[1]):
                    if numpy.abs(c[i, j]) > 0.00001:
                        if bin(j).count("1") % 2:
                            odious = odious + 1
                        else:
                            evil = evil + 1
                if evil > 0:
                    evilRows.append(i)
                if odious > 0:
                    odiousRows.append(i)
            #print (evilRows, odiousRows)
            self.assertLess(numpy.max(evil), numpy.min(odious),
                            "bad order of rows in " + name)
コード例 #2
0
ファイル: test_sig.py プロジェクト: bottler/iisignature
    def testConsistencyOfBases(self):
        m = 6
        sa = iisignature.rotinv2dprepare(m,"a")
        sk = iisignature.rotinv2dprepare(m,"k")
        ca = iisignature.rotinv2dcoeffs(sa)[-1]
        ck = iisignature.rotinv2dcoeffs(sk)[-1]
        
        #every row of ck should be in the span of the rows of ca
        #i.e.  every column of ck.T should be in the span of the columns of
        #ca.T
        #i.e.  there's a matrix b s.t.  ca.T b = ck.T
        residuals = lstsq(ca.T,ck.T)[1]
        self.assertLess(numpy.max(numpy.abs(residuals)),0.000001)

        sq = iisignature.rotinv2dprepare(m, "q")
        cq = iisignature.rotinv2dcoeffs(sq)[-1]
        ss = iisignature.rotinv2dprepare(m, "s")
        cs = iisignature.rotinv2dcoeffs(ss)[-1]
        # every row of cs and cq should be in the span of the rows of ca
        residuals2 = lstsq(ca.T, cs.T)[1]
        self.assertLess(numpy.max(numpy.abs(residuals2)), 0.000001)
        residuals2 = lstsq(ca.T, cq.T)[1]
        self.assertLess(numpy.max(numpy.abs(residuals2)), 0.000001)

        self.assertEqual(cq.shape, cs.shape)

        #check that the invariants are linearly independent (not for k)
        for c, name in ((cs, "s"), (ca, "a"), (cq, "q")):
            self.assertEqual(numpy.linalg.matrix_rank(c),c.shape[0],name)

        #check that rows with nonzeros in evil columns are all before
        #rows with nonzeros in odious columns
        #print ((numpy.abs(ca)>0.00000001).astype("int8"))
        for c, name in ((cs, "s"), (ck, "k"), (ca, "a"), (cq, "q")):
            evilRows = []
            odiousRows = []
            for i in range(c.shape[0]):
                evil = 0
                odious = 0
                for j in range(c.shape[1]):
                    if numpy.abs(c[i, j]) > 0.00001:
                        if bin(j).count("1") % 2:
                            odious = odious + 1
                        else:
                            evil = evil + 1
                if evil > 0:
                    evilRows.append(i)
                if odious > 0:
                    odiousRows.append(i)
            #print (evilRows, odiousRows)
            self.assertLess(numpy.max(evil),numpy.min(odious),"bad order of rows in " + name)
コード例 #3
0
ファイル: test_sig.py プロジェクト: Y8N-Haotian/iisignature
    def dotest(self,type):
        m = 8
        nPaths = 95
        nAngles = 348
        numpy.random.seed(775)
        s = iisignature.rotinv2dprepare(m,type)
        coeffs = iisignature.rotinv2dcoeffs(s)
        angles = numpy.random.uniform(0,math.pi * 2,size=nAngles + 1)
        angles[0] = 0
        rotationMatrices = [numpy.array([[math.cos(i),math.sin(i)],[-math.sin(i),math.cos(i)]]) for i in angles]
        paths = [numpy.random.uniform(-1,1,size=(32,2)) for i in range(nPaths)]
        samePathRotInvs = [iisignature.rotinv2d(numpy.dot(paths[0],mtx),s) for mtx in rotationMatrices]

        #check the length matches
        (length,) = samePathRotInvs[0].shape
        self.assertEqual(length,sum(i.shape[0] for i in coeffs))
        self.assertEqual(length,iisignature.rotinv2dlength(s))
        if type == "a":
            self.assertEqual(length,sumCentralBinomialCoefficient(m // 2))

        self.assertLess(length,nAngles)#sanity check on the test itself

        #check that the invariants are invariant
        if 0:
            print("\n",numpy.column_stack(samePathRotInvs[0:7]))
        for i in range(nAngles):
            if 0 and diff(samePathRotInvs[0],samePathRotInvs[1 + i]) > 0.01:
                print(i)
                print(samePathRotInvs[0] - samePathRotInvs[1 + i])
                print(diff(samePathRotInvs[0],samePathRotInvs[1 + i]))
            self.assertLess(diff(samePathRotInvs[0],samePathRotInvs[1 + i]),0.01)

        #check that the invariants match the coefficients
        if 1:
            sigLevel=iisignature.sig(paths[0],m)[iisignature.siglength(2,m-1):]
            lowerRotinvs = 0 if 2==m else iisignature.rotinv2dlength(iisignature.rotinv2dprepare(m-2,type))
            #print("\n",numpy.dot(coeffs[-1],sigLevel),"\n",samePathRotInvs[0][lowerRotinvs:])
            #print(numpy.dot(coeffs[-1],sigLevel)-samePathRotInvs[0][lowerRotinvs:])
            self.assertTrue(numpy.allclose(numpy.dot(coeffs[-1],sigLevel),samePathRotInvs[0][lowerRotinvs:],atol=0.000001))

        #check that we are not missing invariants
        if type == "a":
            #print("\nrotinvlength=",length,"
            #siglength=",iisignature.siglength(2,m))
            sigOffsets = []
            for path in paths:
                samePathSigs = [iisignature.sig(numpy.dot(path,mtx),m) for mtx in rotationMatrices[1:70]]
                samePathSigsOffsets = [i - samePathSigs[0] for i in samePathSigs[1:]]
                sigOffsets.extend(samePathSigsOffsets)
            #print(numpy.linalg.svd(numpy.row_stack(sigOffsets))[1])
            def split(a, dim, level):
                start = 0
                out = []
                for m in range(1,level + 1):
                    levelLength = dim ** m
                    out.append(a[:,start:(start + levelLength)])
                    start = start + levelLength
                assert(start == a.shape[1])
                return out
            allOffsets = numpy.row_stack(sigOffsets)
            #print (allOffsets.shape)
            splits = split(allOffsets,2,m)
            #print()
            rank_tolerance = 0.01 # this is hackish
            #print
                                             #([numpy.linalg.matrix_rank(i.astype("float64"),rank_tolerance)
                                                                              #for
                                                                              #i in splits])
                                                                              #print ([i.shape for i in splits])
                                                                              #print(numpy.linalg.svd(splits[-1])[1])

            #sanity check on the test
            self.assertLess(splits[-1].shape[1],splits[0].shape[0])
            totalUnspannedDimensions = sum(i.shape[1] - numpy.linalg.matrix_rank(i,rank_tolerance) for i in splits)
            self.assertEqual(totalUnspannedDimensions,length)

        if 0: #This doesn't work - the rank of the whole thing is less than
        #sigLength-totalUnspannedDimensions, which suggests that there are
        #inter-level dependencies,
        #even though the shuffle product dependencies aren't linear. 
        #I don't know why this is.
            sigLength = iisignature.siglength(2,m)
            numNonInvariant = numpy.linalg.matrix_rank(numpy.row_stack(sigOffsets))

            predictedNumberInvariant = sigLength - numNonInvariant
            print(sigLength,length,numNonInvariant)
            self.assertLess(sigLength,nAngles)
            self.assertEqual(predictedNumberInvariant,length)
コード例 #4
0
ファイル: test_sig.py プロジェクト: Y8N-Haotian/iisignature
    def test_batch(self):
        numpy.random.seed(734)
        d=2
        m=2
        n=15
        paths = [numpy.random.uniform(-1,1,size=(6,d)) for i in range(n)]
        pathArray15=stack(paths)
        pathArray1315=numpy.reshape(pathArray15,(1,3,1,5,6,d))
        sigs = [iisignature.sig(i,m) for i in paths]
        sigArray=stack(sigs)
        sigArray15=iisignature.sig(pathArray15,m)
        sigArray1315=iisignature.sig(pathArray1315,m)
        siglength=iisignature.siglength(d,m)
        self.assertEqual(sigArray1315.shape,(1,3,1,5,siglength))
        self.assertTrue(numpy.allclose(sigArray1315.reshape(n,siglength),sigs))
        self.assertEqual(sigArray15.shape,(15,siglength))
        self.assertTrue(numpy.allclose(sigArray15,sigs))

        backsigs=[iisignature.sigbackprop(i,j,m) for i,j in zip(sigs,paths)]
        backsigArray = stack(backsigs)
        backsigs1315=iisignature.sigbackprop(sigArray1315,pathArray1315,m)
        self.assertEqual(backsigs1315.shape,(1,3,1,5,6,d))
        self.assertTrue(numpy.allclose(backsigs1315.reshape(n,6,2),backsigArray))

        data=[numpy.random.uniform(size=(d,)) for i in range(n)]
        dataArray1315=stack(data).reshape((1,3,1,5,d))
        joined=[iisignature.sigjoin(i,j,m) for i,j in zip(sigs,data)]
        joined1315=iisignature.sigjoin(sigArray1315,dataArray1315,m)
        self.assertEqual(joined1315.shape,(1,3,1,5,siglength))
        self.assertTrue(numpy.allclose(joined1315.reshape(n,-1),stack(joined)))
        backjoined=[iisignature.sigjoinbackprop(i,j,k,m) for i,j,k in zip(joined,sigs,data)]
        backjoinedArrays=[stack([i[j] for i in backjoined]) for j in range(2)]
        backjoined1315=iisignature.sigjoinbackprop(joined1315,sigArray1315,dataArray1315,m)
        self.assertEqual(backjoined1315[0].shape,sigArray1315.shape)
        self.assertEqual(backjoined1315[1].shape,dataArray1315.shape)
        self.assertTrue(numpy.allclose(backjoined1315[0].reshape(n,-1),backjoinedArrays[0]))
        self.assertTrue(numpy.allclose(backjoined1315[1].reshape(n,-1),backjoinedArrays[1]))

        dataAsSigs=[iisignature.sig(numpy.row_stack([numpy.zeros((d,)),i]),m) for i in data]
        dataArray13151=dataArray1315[:,:,:,:,None,:]
        dataArray13151=numpy.repeat(dataArray13151,2,4)*[[0.0],[1.0]]
        dataArrayAsSigs1315=iisignature.sig(dataArray13151,m)
        combined1315=iisignature.sigcombine(sigArray1315,dataArrayAsSigs1315,d,m)
        self.assertEqual(joined1315.shape,combined1315.shape)
        self.assertTrue(numpy.allclose(joined1315,combined1315))
        backcombined1315=iisignature.sigcombinebackprop(joined1315,sigArray1315,dataArrayAsSigs1315,d,m)
        backcombined=[iisignature.sigcombinebackprop(i,j,k,d,m) for i,j,k in zip(joined,sigs,dataAsSigs)]
        backcombinedArrays=[stack([i[j] for i in backcombined]) for j in range(2)]
        self.assertEqual(backcombined1315[0].shape,sigArray1315.shape)
        self.assertEqual(backcombined1315[1].shape,sigArray1315.shape)
        self.assertTrue(numpy.allclose(backjoined1315[0],backcombined1315[0]))
        self.assertTrue(numpy.allclose(backcombined1315[0].reshape(n,-1),backcombinedArrays[0]))
        self.assertTrue(numpy.allclose(backcombined1315[1].reshape(n,-1),backcombinedArrays[1]))
        
        scaled=[iisignature.sigscale(i,j,m) for i,j in zip(sigs,data)]
        scaled1315=iisignature.sigscale(sigArray1315,dataArray1315,m)
        self.assertEqual(scaled1315.shape,(1,3,1,5,siglength))
        self.assertTrue(numpy.allclose(scaled1315.reshape(n,-1),stack(scaled)))
        backscaled=[iisignature.sigscalebackprop(i,j,k,m) for i,j,k in zip(scaled,sigs,data)]
        backscaledArrays=[stack([i[j] for i in backscaled]) for j in range(2)]
        backscaled1315=iisignature.sigscalebackprop(scaled1315,sigArray1315,dataArray1315,m)
        self.assertEqual(backscaled1315[0].shape,sigArray1315.shape)
        self.assertEqual(backscaled1315[1].shape,dataArray1315.shape)
        self.assertTrue(numpy.allclose(backscaled1315[0].reshape(n,-1),backscaledArrays[0]))
        self.assertTrue(numpy.allclose(backscaled1315[1].reshape(n,-1),backscaledArrays[1]))

        s_s=(iisignature.prepare(d,m,"cosax"),iisignature.prepare(d,m,"cosahx"))
        for type in ("c","o","s","x","a","ch","oh","sh","ah"):
            s=s_s[1 if "h" in type else 0]
            logsigs = [iisignature.logsig(i,s,type) for i in paths]
            logsigArray=stack(logsigs)
            logsigArray1315=iisignature.logsig(pathArray1315,s,type)
            self.assertEqual(logsigArray1315.shape,(1,3,1,5,logsigs[0].shape[0]),type)
            self.assertTrue(numpy.allclose(logsigArray1315.reshape(n,-1),logsigArray),type)

            if type in ("s","x","sh"):
                backlogs = stack(iisignature.logsigbackprop(i,j,s,type) for i,j in zip(logsigs,paths))
                backlogs1315 = iisignature.logsigbackprop(logsigArray1315,pathArray1315,s,type)
                self.assertEqual(backlogs1315.shape,backsigs1315.shape)
                self.assertTrue(numpy.allclose(backlogs1315.reshape(n,6,d),backlogs),type)

        a=iisignature.rotinv2dprepare(m,"a")
        rots=stack([iisignature.rotinv2d(i,a) for i in paths])
        rots1315=iisignature.rotinv2d(pathArray1315,a)
        self.assertEqual(rots1315.shape,(1,3,1,5,rots.shape[1]))
        self.assertTrue(numpy.allclose(rots1315.reshape(n,-1),rots))
コード例 #5
0
mem_limit_mb=30
mem_limit_b = mem_limit_mb * 1024 * 1024

if os.name=="nt":
	import ctypes
	from ctypes import wintypes

	kernel32 = ctypes.WinDLL('kernel32', use_last_error=True)

	def errcheck_bool(result, func, args):
		if not result:
			raise ctypes.WinError(ctypes.get_last_error())
		return args
		
	kernel32.GetCurrentProcess.restype = wintypes.HANDLE
	kernel32.SetProcessWorkingSetSizeEx.errcheck = errcheck_bool
	kernel32.SetProcessWorkingSetSizeEx.argtypes = (wintypes.HANDLE,
													ctypes.c_size_t,
													ctypes.c_size_t,
													wintypes.DWORD)
	hProcess = kernel32.GetCurrentProcess()
	kernel32.SetProcessWorkingSetSizeEx(hProcess, 204800, mem_limit_b, 6)
elif os.name=="posix":
	import resource
	resource.setrlimit(resource.RLIMIT_AS,(mem_limit_b,mem_limit_b))
else:
	raise RuntimeError("what system")

iisignature.rotinv2dprepare(14,"a")
print ("ok")
#input()
コード例 #6
0
ファイル: test_sig.py プロジェクト: bottler/iisignature
    def dotest(self,type):
        m = 8
        nPaths = 95
        nAngles = 348
        numpy.random.seed(775)
        s = iisignature.rotinv2dprepare(m,type)
        coeffs = iisignature.rotinv2dcoeffs(s)
        angles = numpy.random.uniform(0,math.pi * 2,size=nAngles + 1)
        angles[0] = 0
        rotationMatrices = [numpy.array([[math.cos(i),math.sin(i)],[-math.sin(i),math.cos(i)]]) for i in angles]
        paths = [numpy.random.uniform(-1,1,size=(32,2)) for i in range(nPaths)]
        samePathRotInvs = [iisignature.rotinv2d(numpy.dot(paths[0],mtx),s) for mtx in rotationMatrices]

        #check the length matches
        (length,) = samePathRotInvs[0].shape
        self.assertEqual(length,sum(i.shape[0] for i in coeffs))
        self.assertEqual(length,iisignature.rotinv2dlength(s))
        if type == "a":
            self.assertEqual(length,sumCentralBinomialCoefficient(m // 2))

        self.assertLess(length,nAngles)#sanity check on the test itself

        #check that the invariants are invariant
        if 0:
            print("\n",numpy.column_stack(samePathRotInvs[0:7]))
        for i in range(nAngles):
            if 0 and diff(samePathRotInvs[0],samePathRotInvs[1 + i]) > 0.01:
                print(i)
                print(samePathRotInvs[0] - samePathRotInvs[1 + i])
                print(diff(samePathRotInvs[0],samePathRotInvs[1 + i]))
            self.assertLess(diff(samePathRotInvs[0],samePathRotInvs[1 + i]),0.01)

        #check that the invariants match the coefficients
        if 1:
            sigLevel=iisignature.sig(paths[0],m)[iisignature.siglength(2,m-1):]
            lowerRotinvs = 0 if 2==m else iisignature.rotinv2dlength(iisignature.rotinv2dprepare(m-2,type))
            #print("\n",numpy.dot(coeffs[-1],sigLevel),"\n",samePathRotInvs[0][lowerRotinvs:])
            #print(numpy.dot(coeffs[-1],sigLevel)-samePathRotInvs[0][lowerRotinvs:])
            self.assertTrue(numpy.allclose(numpy.dot(coeffs[-1],sigLevel),samePathRotInvs[0][lowerRotinvs:],atol=0.000001))

        #check that we are not missing invariants
        if type == "a":
            #print("\nrotinvlength=",length,"
            #siglength=",iisignature.siglength(2,m))
            sigOffsets = []
            for path in paths:
                samePathSigs = [iisignature.sig(numpy.dot(path,mtx),m) for mtx in rotationMatrices[1:70]]
                samePathSigsOffsets = [i - samePathSigs[0] for i in samePathSigs[1:]]
                sigOffsets.extend(samePathSigsOffsets)
            #print(numpy.linalg.svd(numpy.row_stack(sigOffsets))[1])
            def split(a, dim, level):
                start = 0
                out = []
                for m in range(1,level + 1):
                    levelLength = dim ** m
                    out.append(a[:,start:(start + levelLength)])
                    start = start + levelLength
                assert(start == a.shape[1])
                return out
            allOffsets = numpy.row_stack(sigOffsets)
            #print (allOffsets.shape)
            splits = split(allOffsets,2,m)
            #print()
            rank_tolerance = 0.01 # this is hackish
            #print
                                             #([numpy.linalg.matrix_rank(i.astype("float64"),rank_tolerance)
                                                                              #for
                                                                              #i in splits])
                                                                              #print ([i.shape for i in splits])
                                                                              #print(numpy.linalg.svd(splits[-1])[1])

            #sanity check on the test
            self.assertLess(splits[-1].shape[1],splits[0].shape[0])
            totalUnspannedDimensions = sum(i.shape[1] - numpy.linalg.matrix_rank(i,rank_tolerance) for i in splits)
            self.assertEqual(totalUnspannedDimensions,length)

        if 0: #This doesn't work - the rank of the whole thing is less than
        #sigLength-totalUnspannedDimensions, which suggests that there are
        #inter-level dependencies,
        #even though the shuffle product dependencies aren't linear. 
        #I don't know why this is.
            sigLength = iisignature.siglength(2,m)
            numNonInvariant = numpy.linalg.matrix_rank(numpy.row_stack(sigOffsets))

            predictedNumberInvariant = sigLength - numNonInvariant
            print(sigLength,length,numNonInvariant)
            self.assertLess(sigLength,nAngles)
            self.assertEqual(predictedNumberInvariant,length)
コード例 #7
0
ファイル: test_sig.py プロジェクト: bottler/iisignature
    def test_batch(self):
        numpy.random.seed(734)
        d=2
        m=2
        n=15
        paths = [numpy.random.uniform(-1,1,size=(6,d)) for i in range(n)]
        pathArray15=stack(paths)
        pathArray1315=numpy.reshape(pathArray15,(1,3,1,5,6,d))
        sigs = [iisignature.sig(i,m) for i in paths]
        sigArray=stack(sigs)
        sigArray15=iisignature.sig(pathArray15,m)
        sigArray1315=iisignature.sig(pathArray1315,m)
        siglength=iisignature.siglength(d,m)
        self.assertEqual(sigArray1315.shape,(1,3,1,5,siglength))
        self.assertTrue(numpy.allclose(sigArray1315.reshape(n,siglength),sigs))
        self.assertEqual(sigArray15.shape,(15,siglength))
        self.assertTrue(numpy.allclose(sigArray15,sigs))

        backsigs=[iisignature.sigbackprop(i,j,m) for i,j in zip(sigs,paths)]
        backsigArray = stack(backsigs)
        backsigs1315=iisignature.sigbackprop(sigArray1315,pathArray1315,m)
        self.assertEqual(backsigs1315.shape,(1,3,1,5,6,d))
        self.assertTrue(numpy.allclose(backsigs1315.reshape(n,6,2),backsigArray))

        data=[numpy.random.uniform(size=(d,)) for i in range(n)]
        dataArray1315=stack(data).reshape((1,3,1,5,d))
        joined=[iisignature.sigjoin(i,j,m) for i,j in zip(sigs,data)]
        joined1315=iisignature.sigjoin(sigArray1315,dataArray1315,m)
        self.assertEqual(joined1315.shape,(1,3,1,5,siglength))
        self.assertTrue(numpy.allclose(joined1315.reshape(n,-1),stack(joined)))
        backjoined=[iisignature.sigjoinbackprop(i,j,k,m) for i,j,k in zip(joined,sigs,data)]
        backjoinedArrays=[stack([i[j] for i in backjoined]) for j in range(2)]
        backjoined1315=iisignature.sigjoinbackprop(joined1315,sigArray1315,dataArray1315,m)
        self.assertEqual(backjoined1315[0].shape,sigArray1315.shape)
        self.assertEqual(backjoined1315[1].shape,dataArray1315.shape)
        self.assertTrue(numpy.allclose(backjoined1315[0].reshape(n,-1),backjoinedArrays[0]))
        self.assertTrue(numpy.allclose(backjoined1315[1].reshape(n,-1),backjoinedArrays[1]))

        scaled=[iisignature.sigscale(i,j,m) for i,j in zip(sigs,data)]
        scaled1315=iisignature.sigscale(sigArray1315,dataArray1315,m)
        self.assertEqual(scaled1315.shape,(1,3,1,5,siglength))
        self.assertTrue(numpy.allclose(scaled1315.reshape(n,-1),stack(scaled)))
        backscaled=[iisignature.sigscalebackprop(i,j,k,m) for i,j,k in zip(scaled,sigs,data)]
        backscaledArrays=[stack([i[j] for i in backscaled]) for j in range(2)]
        backscaled1315=iisignature.sigscalebackprop(scaled1315,sigArray1315,dataArray1315,m)
        self.assertEqual(backscaled1315[0].shape,sigArray1315.shape)
        self.assertEqual(backscaled1315[1].shape,dataArray1315.shape)
        self.assertTrue(numpy.allclose(backscaled1315[0].reshape(n,-1),backscaledArrays[0]))
        self.assertTrue(numpy.allclose(backscaled1315[1].reshape(n,-1),backscaledArrays[1]))

        s_s=(iisignature.prepare(d,m,"cosax"),iisignature.prepare(d,m,"cosahx"))
        for type in ("c","o","s","x","a","ch","oh","sh","ah"):
            s=s_s[1 if "h" in type else 0]
            logsigs = [iisignature.logsig(i,s,type) for i in paths]
            logsigArray=stack(logsigs)
            logsigArray1315=iisignature.logsig(pathArray1315,s,type)
            self.assertEqual(logsigArray1315.shape,(1,3,1,5,logsigs[0].shape[0]),type)
            self.assertTrue(numpy.allclose(logsigArray1315.reshape(n,-1),logsigArray),type)

            if type in ("s","x","sh"):
                backlogs = stack(iisignature.logsigbackprop(i,j,s,type) for i,j in zip(logsigs,paths))
                backlogs1315 = iisignature.logsigbackprop(logsigArray1315,pathArray1315,s,type)
                self.assertEqual(backlogs1315.shape,backsigs1315.shape)
                self.assertTrue(numpy.allclose(backlogs1315.reshape(n,6,d),backlogs),type)

        a=iisignature.rotinv2dprepare(m,"a")
        rots=stack([iisignature.rotinv2d(i,a) for i in paths])
        rots1315=iisignature.rotinv2d(pathArray1315,a)
        self.assertEqual(rots1315.shape,(1,3,1,5,rots.shape[1]))
        self.assertTrue(numpy.allclose(rots1315.reshape(n,-1),rots))