コード例 #1
0
def createLabelColorBar():

    imp7 = ImagePlus("labelColorBar", ShortProcessor(180, 20))
    ip7 = imp7.getProcessor()
    pix = ip7.getPixels()
    n_pixels = len(pix)
    # catch width
    w = imp7.getWidth()
    # create a ramp gradient from left to right
    for i in range(len(pix)):
        pix[i] = int((i % w) / 18) + 1

    # adjust min and max
    ip7.setMinAndMax(0, 255)
    font = Font("SansSerif", Font.PLAIN, 12)
    overlay = Overlay()
    for i in range(len(pix)):

        roi = TextRoi(i * 18 + 2, 2, str(i + 1), font)
        roi.setStrokeColor(Color.black)
        overlay.add(roi)
        imp7.setOverlay(overlay)

    imp7.show()
    IJ.run("glasbey_on_dark")
    imp7 = imp7.flatten()

    return imp7
コード例 #2
0
ファイル: CubifyROI.py プロジェクト: HernandoMV/Fiji_Custom
def overlay_corners(corners, L):
    ov = Overlay()
    for [x, y] in corners:
        rect = Roi(x, y, L, L)
        rect.setStrokeColor(Color.RED)
        rect.setLineWidth(40)
        ov.add(rect)
    return ov
コード例 #3
0
 def restoreRoi(self):
     overlay = Overlay()
     rois = [
         r for ind, r in enumerate(self.newRois)
         if ind != self.outlineRoiInd
     ]
     for roi in rois:
         overlay.add(roi)
     self.impCrop.setOverlay(overlay)
コード例 #4
0
 def drawMinima(self):
     IJ.run("Remove Overlay", "")
     self.calculateSubtreeMinima()
     overlay = Overlay()
     for child in self.children:
         for spot in child.minima:
             roi = OvalRoi(spot.x - spot.radius, spot.y - spot.radius,
                           2 * spot.radius, 2 * spot.radius)
             overlay.add(roi)
     IJ.getImage().setOverlay(overlay)
コード例 #5
0
ファイル: fijipytools.py プロジェクト: soyers/OAD
    def roiprocess_ov(imp, filename):
        """
        !!! This is for testing purposes only. It is currently not used !!!
        """
        ov = Overlay()
        rt = ov.measure(imp)
        # log.info('Size ResultTable: ' + str(rt.size()))
        # print('Size ResultTable: ', rt.size())

        return None
def drawMinima(minima):
	rt = ResultsTable.getResultsTable()
	X = rt.getColumn(ResultsTable.X_CENTROID)
	Y = rt.getColumn(ResultsTable.Y_CENTROID)
	D = rt.getColumn(ResultsTable.FERET)	
	overlay = Overlay()
	for minimum in minima:
		index = minima[minimum]
	 	r = float(D[index]) / 2
		roi = OvalRoi(float(X[index])-r, float(Y[index])-r, float(D[index]), float(D[index]))	
		overlay.add(roi)
	IJ.getImage().setOverlay(overlay)
コード例 #7
0
def ER_points(all_x, all_y, overlay, ER_measurements):
    imp = IJ.getImage()
    overlay = Overlay()
    overlay = imp.getOverlay()
    ## gets points added to overlay, and extracts a list of x & y values. list length must be three ###
    try:
        roi_points = overlay.toArray()
    except AttributeError as error:
        nbgd = NonBlockingGenericDialog("Select three Roi's")
        nbgd.hideCancelButton()
        nbgd.showDialog()
        overlay = imp.getOverlay()
        roi_points = overlay.toArray()
        pass

    for i in range(overlay.size()):
        roi = overlay.get(i)
        p = roi_points[i].getPolygon()
        all_x.append(p.xpoints[0])
        all_y.append(p.ypoints[0])
    while len(all_x) != 3:
        if len(all_x) < 3:
            nbgd = NonBlockingGenericDialog("Must Select three Roi's")
            nbgd.setCancelLabel("Roi Reset")
            nbgd.showDialog()
            if nbgd.wasCanceled():
                IJ.run("Remove Overlay", "")
            ER_points(all_x, all_y, overlay, ER_measurements)
        if len(all_x) > 3:
            all_x.pop(0)
            all_y.pop(0)
    overlay.clear()
コード例 #8
0
def convert_SNTpaths_to_roi(SNTpaths):
	'''
	Converts a list of SNT_paths to an Array of imageJ1 rois.
	'''
	roi_list = []
	for SNTpath in SNTpaths:
		as_tree = Tree()
		as_tree.add(SNTpath)
		converter = RoiConverter(as_tree)
		overlay = Overlay()
		converter.convertPaths(overlay)
		roi = overlay.toArray()[0]
		roi_list.append(roi)
	return roi_list
コード例 #9
0
def create_mask_selection(movie,
                          sigma=0,
                          thresh_method='Huang',
                          threshold=None):
    ''' 
    If threshold is *None* use selected AutoThreshold, otherwise
    use fixed *threshold* '''

    C = movie.getC()
    S = movie.getSlice()
    NFrames = movie.getNFrames()

    maxThresh = 2**movie.getBitDepth()

    tts = ThresholdToSelection()

    ov = Overlay()  # to save the rois
    for frame in range(1, NFrames + 1):

        movie.setPosition(C, S, frame)
        ip = movie.getProcessor().duplicate()
        # imp = ImagePlus('Blurred', ip)
        if sigma != 0:
            ip.blurGaussian(sigma)

        # manual thresholding
        if threshold:
            ip.setThreshold(threshold, maxThresh, 0)  # no LUT update

        # automatic thresholding
        else:
            ip.setAutoThreshold(thresh_method, True, False)

        tts.setup("", movie)
        shape_roi = tts.convert(ip)

        # only one connected roi present
        if type(shape_roi) == ij.gui.PolygonRoi:
            mask_roi = shape_roi

        else:
            # for disconnected regions.. take the shape_roi as is
            # rois = shape_roi.getRois() # splits into sub rois
            # mask_roi = get_largest_roi(rois) # sort out smaller Rois
            mask_roi = shape_roi

        mask_roi.setPosition(frame)
        ov.add(mask_roi)

    return ov
コード例 #10
0
ファイル: RangeRois.py プロジェクト: leec13/MorphoBactDev
		def buttonPressed(event):
			temprois=self.getIncludeRois()
			for roi in temprois:
				m=Morph(self.__image, roi)
				IJ.log("----------------------------------")
				IJ.log(roi.getName())
				for r in self.__ranges.values():
					IJ.log(r[0]+" min= "+str(r[1])+" < val="+str(m.__getattribute__(r[0]))+" < max= "+str(r[2]))
			IJ.run(self.__image, "Remove Overlay", "")
			o=Overlay()
			for roi in temprois:
				o.addElement(roi)
			self.__image.killRoi()
			self.__image.setOverlay(o)
			self.__image.updateAndDraw()
コード例 #11
0
ファイル: CellCropper_V4.py プロジェクト: schiklen/DotObjects
    def __init__(self, p):
        self.cellCounter = 1
        self.olay = Overlay()
        self.position = p
        print p.getRoiPath()
        if p.getRoiPath() != None:         # check if there is an existing overlay file and load it!
            p.loadRois()

        self.frame = JFrame("CellCropper", size=(200,200))
        self.frame.setLocation(20,120)
        self.Panel = JPanel(GridLayout(0,1))
        self.frame.add(self.Panel)
        #self.nameField = JTextField("p" + "_c",15)
        self.nameField = JTextField("p" + str(self.position.getID()) + "_c",15)
        self.Panel.add(self.nameField)
        self.cutoutButton = JButton("Cut out cell",actionPerformed=cut)
        self.Panel.add(self.cutoutButton)
        self.delOlButton = JButton("Delete Overlay",actionPerformed=delOverlay)
        self.Panel.add(self.delOlButton)
        self.saveOlButton = JButton("Save Overlay",actionPerformed=saveOverlay)
        self.Panel.add(self.saveOlButton) 
        self.quitButton = JButton("Quit script",actionPerformed=quit)
        self.Panel.add(self.quitButton)
        self.frame.pack()
        WindowManager.addWindow(self.frame)
        self.show()
コード例 #12
0
def drawLines(imp, points=None):
    if points and (len(points)%2 == 0):
        # points is numeric list of even length
        pRoi = PointRoi(points[0::2], points[1::2], len(points)/2)
        pRoi.setShowLabels(True)
        pRoi.setSize(3)
        imp.setRoi(pRoi)
    roi = imp.getRoi()
    pp = roi.getFloatPolygon()
    # print "Added", pp.npoints
    if pp.npoints <= 1:
        # don't draw if only one point
        return
    xys = []
    for i in xrange(pp.npoints):
        xys.append([pp.xpoints[i], pp.ypoints[i]])
    ol = Overlay()
    x0 = xys[0][0]
    y0 = xys[0][1]
    cal = imp.getCalibration()
    for i in xrange(1, pp.npoints):
        xi = xys[i][0]
        yi = xys[i][1]
        # prepare text label
        d = math.sqrt((xi - x0)**2 + (yi - y0)**2) * cal.pixelWidth
        dText = String.format("%.2f ", d) + cal.getUnits()
        textOffset = 30
        xt = xi
        yt = yi
#        if xi > x0:
#            xt += textOffset
        if xi < x0:
            xt -= textOffset
#        if yi > y0:
#            yt += textOffset
        if yi < y0:
            yt -= textOffset
        dTextRoi = TextRoi(xt, yt, dText)
        ol.add(dTextRoi)

        lineRoi = Line(x0, y0, xi, yi)
        lineRoi.setStrokeWidth(1)
        lineRoi.setStrokeColor(Color(255,255,0))
        ol.add(lineRoi)
    imp.setOverlay(ol)
    imp.updateAndDraw()
コード例 #13
0
ファイル: Draw_Energy_Scale.py プロジェクト: m-entrup/EFTEMj
def draw_scale(image, ticks):
    cal = image.getCalibration()
    overlay = Overlay()
    image.setOverlay(overlay)
    TextRoi.setGlobalJustification(TextRoi.CENTER)
    offset = image.getHeight() - extend
    for tick in ticks:
        tick_pos = cal.getRawX(tick)
        line = Line(tick_pos, offset, tick_pos, offset + font_size)
        line.setWidth(font_size // 8)
        line.setStrokeColor(Color(1.00, 1.00, 1.00))
        overlay.add(line)
        text = TextRoi(tick_pos, offset + font_size, str(tick), font)
        text_width = text.getFloatWidth()
        text_y = text.getYBase()
        text.setLocation(tick_pos - text_width/2, text_y)
        text.setStrokeColor(Color(1.00, 1.00, 1.00))
        overlay.add(text)
コード例 #14
0
def labelMontage(imp, lLabels, cols, rows, w0=12, h0=2, font=24, col=Color.WHITE):
  """labelMontage(imp, lLabels, cols, rows, w0=12, h0=2, font=24, col=Color.WHITE)
  Label a montage in the overlay
  Inputs:
  imp     - the ImagePlus of the montage to label
  lLabels - a list of labels to write into the overlay
  cols    - the number of columns in the montage
  rows    - the number of rows in the montage
  w0      - the x offset for the label (defaults to 12 px)
  h0      - the y offset for the label (defaults to  2 px)
  font    - the size of the font (pts, defaults to 24)
  col     - color of text. Default to Color.WHITE
  Returns
  an ImagePlus with a labeled, duplicate of the input image
  """
  print(cols,rows)
  wBase = imp.getWidth()/cols
  hBase = imp.getHeight()/rows
  print(wBase, hBase)
  l = len(lLabels)
  xt = 0
  y = 0
  # make a copy
  res = imp.duplicate()
  # let's create an array of text rois
  ol = Overlay()
  for i in range(l):
    x = (i % cols+1)-1
    if x < xt:
      y += 1
    xt = x
    xL = x * wBase + w0
    yL = y * hBase + h0
    print(xL,yL)
    tr = TextRoi(xL, yL, lLabels[i])
    tr.setColor(col)
    tr.setFont("SanSerif", font, 1) 
    tr.setJustification(TextRoi.CENTER)
    tr.setAntialiased(True)
    ol.add(tr)
  res.show()
  res.setOverlay(ol)
  res.updateAndRepaintWindow()
  return res
コード例 #15
0
def getOverlay(imp):
    """ Returns an image overlay cleansed of spot ROIs from previous runs """
    overlay = imp.getOverlay()
    if overlay is None:
        return Overlay()
    for i in range(0, overlay.size() - 1):
        roi_name = overlay.get(i).getName()
        if roi_name is not None and "Spots" in roi_name:
            overlay.remove(i)
    return overlay
def analyse():
	rt = ResultsTable()
	ol = Overlay()

	masks = [getMask(imp, c) for c in range(1, C+1)]
	DAPImask = masks[0]
	IJ.run(DAPImask, "Create Selection", "")
	DAPIRoi = DAPImask.getRoi()
	rois = ShapeRoi(DAPIRoi).getRois()
	for c,mask in enumerate(masks):
		if c==0:
コード例 #17
0
ファイル: RangeRois.py プロジェクト: leec13/MorphoBactDev
		def valueChanged(event):
			name=event.getSource().getName()
			names=name.split("_")
			factor=1
			if names[0] in self.__set1000: factor=0.001
			if names[0] in self.__set10:factor=0.1
			value=event.getSource().getValue()*factor
			if names[1]=="min":
				self.__ranges[names[0]]=(names[0], value, self.__slidersDict[names[0]+"_max"].getValue()*factor, self.__boxesDict[names[0]].getState())
				#self.__ranges[names[0]]=(names[0], value, self.__slidersDict[names[0]+"_max"].getValue()*factor)
			else: self.__ranges[names[0]]=(names[0], self.__slidersDict[names[0]+"_min"].getValue()*factor, value, self.__boxesDict[names[0]].getState())
				#self.__ranges[names[0]]=(names[0], self.__slidersDict[names[0]+"_min"].getValue()*factor, value)
			temprois=self.getIncludeRois()
			IJ.run(self.__image, "Remove Overlay", "")
			o=Overlay()
			for roi in temprois:
				o.addElement(roi)
			self.__image.killRoi()
			self.__image.setOverlay(o)
			self.__image.updateAndDraw()
コード例 #18
0
    def createMIP(self):
        print "starting createMIP"
        for a in self.itemSelected:
            ImStack = None
            for filename in self.dict1.get(a):
                self.savfileName = a
                if not filename.endswith(self.fileExt):
                    continue
                path = self.sourceDir + filename
                # Upon finding the first image, initialize the VirtualStack
                if ImStack is None:
                    imp = IJ.openImage(path)
                    ImStack = VirtualStack(imp.width, imp.height, None,
                                           self.sourceDir)
                # Add a slice, relative to the sourceDIr
                ImStack.addSlice(filename)
            #adding text overlay to output images so we can differentiate them. Overlay is non destructive - does not affect pixel values of image, and can be selected and deleted
            prefix_overlay = Overlay()
            font = Font("SansSerif", Font.PLAIN, 10)
            roi = TextRoi(0, 0, a)
            roi.setStrokeColor(Color(1.00, 1.00, 1.00))
            prefix_overlay.add(roi)
            #
            OnscreenImage = ImagePlus(self.sourceDir, ImStack)
            OnscreenImage.setOverlay(prefix_overlay)
            OnscreenImage.show()

            print "Generating MIP, waiting..."
            self.outimp = self.maxZprojection(
                OnscreenImage)  #generate max projection
            self.outimp.setOverlay(prefix_overlay)
            self.outimp.show()
            print "Max projection generated"
            if self.saveState == "Y":
                self.saveMIP()
            print "Finished!"
コード例 #19
0
def drawLines(imp, points=None):
    if points and (len(points) % 2 == 0):
        # points is numeric list of even length
        pRoi = PointRoi(points[0::2], points[1::2], len(points) / 2)
        pRoi.setShowLabels(True)
        pRoi.setSize(3)
        imp.setRoi(pRoi)
    roi = imp.getRoi()
    pp = roi.getFloatPolygon()
    # print "Added", pp.npoints
    if pp.npoints <= 1:
        # don't draw if only one point
        return
    xys = []
    for i in xrange(pp.npoints):
        xys.append([pp.xpoints[i], pp.ypoints[i]])
    ol = Overlay()
    x0 = xys[0][0]
    y0 = xys[0][1]
    cal = imp.getCalibration()
    for i in xrange(1, pp.npoints):
        xi = xys[i][0]
        yi = xys[i][1]
        # prepare text label
        d = math.sqrt((xi - x0)**2 + (yi - y0)**2) * cal.pixelWidth
        dText = String.format("%.2f ", d) + cal.getUnits()
        textOffset = 30
        xt = xi
        yt = yi
        #        if xi > x0:
        #            xt += textOffset
        if xi < x0:
            xt -= textOffset


#        if yi > y0:
#            yt += textOffset
        if yi < y0:
            yt -= textOffset
        dTextRoi = TextRoi(xt, yt, dText)
        ol.add(dTextRoi)

        lineRoi = Line(x0, y0, xi, yi)
        lineRoi.setStrokeWidth(1)
        lineRoi.setStrokeColor(Color(255, 255, 0))
        ol.add(lineRoi)
    imp.setOverlay(ol)
    imp.updateAndDraw()
コード例 #20
0
def save_roi_set(imp=IJ.getImage()):

    img_dir, name = get_file_info()
    roi_dir = make_roi_dir(img_dir, name)
    roi_path = make_roi_path(roi_dir, name)

    Roi.setColor(Color.blue)
    rm = RoiManager().getInstance()
    rm.deselect()
    rm.runCommand("Save", roi_path)

    ol = imp.getOverlay()
    if ol is None:
        ol = Overlay()
    for roi in rm.getRoisAsArray():
        ol.add(roi)
        imp.setOverlay(ol)

    rm.runCommand("delete")
    ol.setStrokeColor(Color.blue)
    Roi.setColor(Color.yellow)
コード例 #21
0
def NND(imp, mapC, compareC):
    cal = imp.getCalibration()
    title = imp.getTitle()
    impZ = imp.getNSlices()
    dup = Duplicator()
    compare = dup.run(imp, compareC, compareC, 1, impZ, 1, 1)
    compare = reslice(compare, cal.pixelWidth)
    IJ.run(compare, "Gaussian Blur 3D...", "x=3 y=3 z=3")
    Z = compare.getNSlices()
    IJ.setAutoThreshold(compare, THRESHOLD + " dark stack")
    Prefs.blackBackground = True
    IJ.run(compare, "Convert to Mask",
           "method=" + THRESHOLD + " background=Dark black")
    IJ.run(compare, "Exact Signed Euclidean Distance Transform (3D)", "")
    edtcompare = WindowManager.getImage("EDT")
    edtcompare.getWindow().setVisible(False)

    mapp = dup.run(imp, mapC, mapC, 1, impZ, 1, 1)
    mapp = reslice(mapp, cal.pixelWidth)
    IJ.run(mapp, "Gaussian Blur 3D...", "x=3 y=3 z=3")
    IJ.setAutoThreshold(mapp, THRESHOLD + " dark stack")
    Prefs.blackBackground = True
    IJ.run(mapp, "Convert to Mask",
           "method=" + THRESHOLD + " background=Dark black")

    dists = []
    rt = ResultsTable()
    ol = Overlay()
    row = 0
    for z in range(Z):
        mapp.setPosition(z + 1)
        IJ.run(mapp, "Create Selection", "")
        if mapp.getStatistics().mean == 0:
            IJ.run(mapp, "Make Inverse", "")
        roi = mapp.getRoi()
        if roi is None:
            continue

        edtcompare.setPosition(z + 1)
        edtcompare.setRoi(roi)
        IJ.setBackgroundColor(0, 0, 0)
        IJ.run(edtcompare, "Clear Outside", "slice")

        ip = edtcompare.getProcessor()
        roiList = ShapeRoi(roi).getRois()  #split roi to limit bounds
        for sr in roiList:
            bounds = sr.getBounds()
            for y in range(0, bounds.height):
                for x in range(0, bounds.width):
                    if sr.contains(bounds.x + x, bounds.y + y):
                        d = ip.getf(bounds.x + x,
                                    bounds.y + y) * cal.pixelWidth * 1000
                        rt.setValue("C" + str(mapC) + " X", row,
                                    (bounds.x + x) * cal.pixelWidth)
                        rt.setValue("C" + str(mapC) + " Y", row,
                                    (bounds.y + y) * cal.pixelHeight)
                        rt.setValue("C" + str(mapC) + " Z", row,
                                    z * cal.pixelDepth)
                        rt.setValue("Distance to C" + str(compareC) + " (nm)",
                                    row, d)
                        row += 1
                        histD = d
                        if histD >= 0:  #set all overlapping voxel distances to 0
                            histD = 0
                        dists.append(
                            -histD)  #invert to positive for outside distance
        posZ = int(((z + 1) / float(Z)) * impZ) + 1
        roi.setPosition(0, posZ, 1)
        roi.setStrokeColor(Colour.MAGENTA)
        ol.add(roi)

        compare.setPosition(z + 1)
        IJ.run(compare, "Create Selection", "")
        if compare.getStatistics().mean == 0:
            IJ.run(compare, "Make Inverse", "")
        compareRoi = compare.getRoi()
        if compareRoi is not None:
            compareRoi.setPosition(0, posZ, 1)
            compareRoi.setStrokeColor(Colour.CYAN)
            ol.add(compareRoi)

    edtcompare.killRoi()
    histogram(title + " C" + str(mapC) + "-C" + str(compareC) + " Distance",
              dists)
    rt.show(title + " C" + str(mapC) + "-C" + str(compareC) + " Distance")
    imp.setOverlay(ol)
    compare.close()
    edtcompare.changes = False
    edtcompare.close()
    mapp.close()
コード例 #22
0
def addRoiToOverlay(imp, roi, labCol=Color.white, linCol=Color.white):
  """addRoiToOverlay(imp, roi, labCol=Color.white, linCol=Color.white)
  A convenience function to draw a ROI into the overlay of an ImagePlus. This is useful for
  situations where ROIs are computed from a highly processed image and tha analyst wants to
  draw them into the overlay of the original image (e.g. particle analysis after a 
  watershed separation. Adapted from addToOverlay() from Analyzer.java
  Inputs:
  imp    - the ImagePlus instance into which we draw the ROI
  roi    - the ROI to draw
  labCol - the color or the label (default white)
  linCol - the color of the stroke/line (default white)
  Returns
  imp    - the ImagePlus with the updated overlay"""
  roi.setIgnoreClipRect(True)
  ovl = imp.getOverlay()
  if ovl == None:
    ovl = Overlay()
  ovl.drawNames(True)
  ovl.setStrokeColor(linCol)
  ovl.setLabelColor(labCol);
  ovl.drawBackgrounds(False);
  ovl.add(roi)
  imp.setOverlay(ovl)
  return imp
コード例 #23
0
    plot.setFixedLegendItems(legend)

    frame = ChartFrame(imp.getTitle()+" Z-Normalised Intensity", chart)
    frame.pack()
    frame.setSize( Dimension(800, 800) )
    frame.setLocationRelativeTo(None)
    frame.setVisible(True)


imp = IJ.getImage()
cal = imp.getCalibration()
if cal.pixelWidth > 0.5:
    IJ.error("Bad calibration: "+str(cal.pixelWidth)+" "+cal.getUnit())
    exit(0)
ol = Overlay()
stack = imp.getStack()
W = imp.getWidth()
H = imp.getHeight()
Z = imp.getNSlices()
T = imp.getNFrames()


focusStack = getDICfocus(imp)
projC1 = getC1Projection(imp, True)

cells = getCells(focusStack)

nuclei = getNuclei(projC1)

measure(projC1, cells, nuclei)
コード例 #24
0
ファイル: Myxo_Track.py プロジェクト: leec13/MorphoBactDev
gw = CellsSelection()
gw.setTitle(imp.getTitle())
gw.run(dictRois.keys(), pathdir)
gw.show()
gw.setSelected(dictRois.keys())
while not gw.oked and gw.isShowing() : 
	gw.setLabel("Validate selection with OK !!")
	listcellname = list(gw.getSelected())
gw.resetok()
gw.setLabel("...")
gw.hide()

rm.runCommand("reset")

if imp.getOverlay() is not None : imp.getOverlay().clear()
overlay=Overlay()
imp.setOverlay(overlay)
gd0=NonBlockingGenericDialog("settings")
gd0.addCheckbox("Show the overlay during the process ? (slow option)", False)
gd0.addNumericField("Minimal Lifetime  : ",10,0)
gd0.addNumericField("Minimal distance to reversion  : ",2,0)
gd0.addNumericField("Sub sampling ?  : ",1,0)
gd0.showDialog()

isShow = gd0.getNextBoolean()
minLife = gd0.getNextNumber()
mind = gd0.getNextNumber()
subs = gd0.getNextNumber()

if gd0.wasCanceled() : 
	isShow = True
コード例 #25
0
ファイル: CellCropper_V4.py プロジェクト: schiklen/DotObjects
class Menue(object):
    def __init__(self, p):
        self.cellCounter = 1
        self.olay = Overlay()
        self.position = p
        print p.getRoiPath()
        if p.getRoiPath() != None:         # check if there is an existing overlay file and load it!
            p.loadRois()

        self.frame = JFrame("CellCropper", size=(200,200))
        self.frame.setLocation(20,120)
        self.Panel = JPanel(GridLayout(0,1))
        self.frame.add(self.Panel)
        #self.nameField = JTextField("p" + "_c",15)
        self.nameField = JTextField("p" + str(self.position.getID()) + "_c",15)
        self.Panel.add(self.nameField)
        self.cutoutButton = JButton("Cut out cell",actionPerformed=cut)
        self.Panel.add(self.cutoutButton)
        self.delOlButton = JButton("Delete Overlay",actionPerformed=delOverlay)
        self.Panel.add(self.delOlButton)
        self.saveOlButton = JButton("Save Overlay",actionPerformed=saveOverlay)
        self.Panel.add(self.saveOlButton) 
        self.quitButton = JButton("Quit script",actionPerformed=quit)
        self.Panel.add(self.quitButton)
        self.frame.pack()
        WindowManager.addWindow(self.frame)
        self.show()
        #IJ.setTool("freehand")

    '''def getPosition(self, path, filename):
       moved to containers.position.determineID(path, filename)'''

    def eventtest(self, event):
        print "eventtest"

    def setTextField(self, pos):
        name = "p" + str(pos) + "_c"
        self.nameField.setText(name)

    def openOl(self, path, fileName):
        print "aaaaah"

    def show(self):
        self.frame.visible = True

    def close(self):
        if self.olay != None:
            yncd = YesNoCancelDialog(self.frame, "Save overlay?", "Save overlay?") #frame, title, message
            if yncd.yesPressed():
                self.saveOverlay()
        WindowManager.removeWindow(self.frame)
        self.frame.dispose()
        
    def resetCounter(self):
        self.cellCounter = 0
        
    def increaseCounter(self):
        self.cellCounter += 1
        
    def setCounter(self):
        self.cellCounter += 1
        
    #'get' functions
    def getImp(self):
        return self.imp
    
    def getCounter(self):
        return self.cellCounter
        
    def getFrame(self):
        return self.frame
        
    def getFilePath(self):
        return self.filePath

    def getTextField(self):
        return self.nameField.text
    
    def getPosition(self):
        return self.position
    
    # overlay functions
    def addOlay(self, roi):
        self.olay.add(roi)

    def getOverlay(self):
        return self.olay

    def clearOverlay(self):
        self.olay.clear()
        self.cellCounter = 1

    def saveOverlay(self):
        self.position.saveRois()   
コード例 #26
0
ipBF.blurGaussian(5)
maskBF = getMask(ipBF, AutoThresholder.Method.Triangle)
roisBF = getRois(maskBF)

ipTomato = stack.getProcessor(imp.getStackIndex(3, z, 1)).duplicate()
sub = ipTomato.duplicate()
ipTomato.blurGaussian(5)
sub.blurGaussian(20)
ipTomato.copyBits(sub, 0, 0, Blitter.SUBTRACT)
maskTomato = getMask(ipTomato, AutoThresholder.Method.MaxEntropy)
roisTomato = getRois(maskTomato)

bfMeasure = stack.getProcessor(imp.getStackIndex(2, z, 1))
tomatoMeasure = stack.getProcessor(imp.getStackIndex(3, z, 1))
gfpMeasure = stack.getProcessor(imp.getStackIndex(1, z, 1))
ol = Overlay()
rt = ResultsTable()
rt.showRowNumbers(False)
for bf in roisBF:
    bfMeasure.setRoi(bf)
    roiStatsBF = bfMeasure.getStatistics()
    if roiStatsBF.area * cal.pixelWidth * cal.pixelHeight < BFminA:
        continue
    bounds = bf.getBounds()
    cXbf = int(bounds.x + (bounds.width / 2.0))
    cYbf = int(bounds.y + (bounds.height / 2.0))

    bf.setStrokeColor(Color.YELLOW)
    bf.setPosition(0, z, 1)
    ol.add(bf)
コード例 #27
0
                IJ.setBackgroundColor(1, 1, 1)
                imp2 = IJ.getImage()
                IJ.run(imp2, "Draw", "slice")
                IJ.run("Select None")

    # sets up tools for for ER measurement protocol
    IJ.run("Point Tool...", "type=Cross color=Yellow size=Tiny add_to")
    IJ.setTool("point")
    to_transport_channel()

    # user interface
    nbgd = NonBlockingGenericDialog("ER Selection")
    nbgd.addStringField("Selection radius: ", str(radius), 5)
    nbgd.hideCancelButton()
    imp = IJ.getImage()
    overlay = Overlay()
    overlay = imp.getOverlay()
    nbgd.showDialog()

    if mean_max_det is True:
        IJ.setTool("polygon")
    else:
        IJ.setTool("rectangle")

    radius = int(nbgd.getNextString().strip())
    imp = IJ.getImage()
    # set variables
    all_x = []
    all_y = []
    ER_measurements = []
コード例 #28
0
imp = IJ.getImage()
imp.setT(1)
imp.setC(1)

# sets the tools to be used
IJ.run("Point Tool...",
       "type=Cross color=Yellow size=Tiny label counter=0 add_to")
IJ.setTool("point")
# Asks you to select cells, hitting cancel if you made a mistake
nbgd = NonBlockingGenericDialog("Select Cells")
nbgd.showDialog()
if nbgd.wasCanceled():
    IJ.run("Remove Overlay")
# turns the overlay into an object.
imp = IJ.getImage()
overlay = Overlay()
overlay = imp.getOverlay()
# asks if you have selected anything
try:
    roi_points = overlay.toArray()
except AttributeError as error:
    nbgd = NonBlockingGenericDialog("Select some cells boi")
    nbgd.showDialog()
if blur_state == True:
    set_sigma = "sigma=" + str(blur_val) + " stack"
    IJ.run("Gaussian Blur...", set_sigma)
path = os.chdir(dest)
if not os.path.exists(ProFolder):
    os.mkdir(ProFolder)
    os.chdir(ProFolder)
    Path = (os.getcwd())
コード例 #29
0
def batch_open_images(pathImage, pathRoi, pathMask, file_typeImage=None,  name_filterImage=None,  recursive=False):
    '''Open all files in the given folder.
    :param path: The path from were to open the images. String and java.io.File are allowed.
    :param file_type: Only accept files with the given extension (default: None).
    :param name_filter: Reject files that contain the given string (default: wild characters).
    :param recursive: Process directories recursively (default: False).
    '''
    # Converting a File object to a string.
    if isinstance(pathImage, File):
        pathImage = pathImage.getAbsolutePath()

    def check_type(string):
        '''This function is used to check the file type.
        It is possible to use a single string or a list/tuple of strings as filter.
        This function can access the variables of the surrounding function.
        :param string: The filename to perform the check on.
        '''
        if file_typeImage:
            # The first branch is used if file_type is a list or a tuple.
            if isinstance(file_typeImage, (list, tuple)):
                for file_type_ in file_typeImage:
                    if string.endswith(file_type_):
                        # Exit the function with True.
                        return True
                    else:
                        # Next iteration of the for loop.
                        continue
            # The second branch is used if file_type is a string.
            elif isinstance(file_typeImage, string):
                if string.endswith(file_typeImage):
                    return True
                else:
                    return False
            return False
        # Accept all files if file_type is None.
        else:
            return True

    def dog_detection(overlay,img, imp, cal):

                 # Create a variable of the correct type (UnsignedByteType) for the value-extended view
				 zero = img.randomAccess().get().createVariable()
				
				 # Run the difference of Gaussian
				 cell = 8.0 # microns in diameter
				 min_peak = 2.0 # min intensity for a peak to be considered
				 dog = DogDetection(Views.extendValue(img, zero), img,
				                   [cal.pixelWidth, cal.pixelHeight,cal.pixelDepth],
				                   cell / 2, cell,
				                   DogDetection.ExtremaType.MINIMA, 
				                   min_peak, False,
				                   DoubleType())
				
				 peaks = dog.getPeaks()
				 roi = OvalRoi(0, 0, cell/cal.pixelWidth, cell/cal.pixelHeight)  
				 print ('Number of cells = ', len(peaks))
			 	 p = zeros(img.numDimensions(), 'i')  
			 	
				 boundRect = imp.getRoi()
				 for peak in peaks:  
				    # Read peak coordinates into an array of integers  XYZ location of spots
				    peak.localize(p)  
				    print(p)
				    if(boundRect is not None and boundRect.contains(p[0], p[1])):
						    oval = OvalRoi(p[0], p[1],cell/cal.pixelWidth,  cell/cal.pixelHeight)
						    oval.setColor(Color.RED)
						    overlay.add(oval) 

    def check_filter(string):
        '''This function is used to check for a given filter.
        It is possible to use a single string or a list/tuple of strings as filter.
        This function can access the variables of the surrounding function.
        :param string: The filename to perform the filtering on.
        '''
        if name_filterImage:
            # The first branch is used if name_filter is a list or a tuple.
            if isinstance(name_filterImage, (list, tuple)):
                for name_filter_ in name_filterImage:
                    if name_filter_ in string:
                        # Exit the function with True.
                        
                        return True
                    else:
                        # Next iteration of the for loop.
                        continue
            # The second branch is used if name_filter is a string.
            elif isinstance(name_filterImage, string):
                if name_filterImage in string:
                    return True
                else:
                    return False
            return False
        else:
        # Accept all files if name_filter is None.
            return True

   

    # We collect all files to open in a list.
    path_to_Image = []
    # Replacing some abbreviations (e.g. $HOME on Linux).
    path = os.path.expanduser(pathImage)
    path = os.path.expandvars(pathImage)
    # If we don't want a recursive search, we can use os.listdir().
    if not recursive:
        for file_name in os.listdir(pathImage):
            full_path = os.path.join(pathImage, file_name)
            if os.path.isfile(full_path):
                if check_type(file_name):
                    if check_filter(file_name):
                        path_to_Image.append(full_path)
    # For a recursive search os.walk() is used.
    else:
        # os.walk() is iterable.
        # Each iteration of the for loop processes a different directory.
        # the first return value represents the current directory.
        # The second return value is a list of included directories.
        # The third return value is a list of included files.
        for directory, dir_names, file_names in os.walk(pathImage):
            # We are only interested in files.
            for file_name in file_names:
                # The list contains only the file names.
                # The full path needs to be reconstructed.
                full_path = os.path.join(directory, file_name)
                # Both checks are performed to filter the files.
                if check_type(file_name):
                    if check_filter(file_name) is False:
                        # Add the file to the list of images to open.
                        path_to_Image.append([full_path, os.path.basename(os.path.splitext(full_path)[0])])
    # Create the list that will be returned by this function.
    Images = []
    Rois = []
    for img_path, file_name in path_to_Image:
        # IJ.openImage() returns an ImagePlus object or None.
        imp = IJ.openImage(img_path)
        imp.show()
        print(img_path)
        if check_filter(file_name):
         continue;
        else: 
         print(file_name  ,  pathRoi)
        RoiName = str(pathRoi) + '/'+ file_name + '_rois' + '.zip'
        
        if os.path.exists(RoiName):
		         Roi = IJ.open(RoiName)
		         imp = IJ.getImage()
		         cal= imp.getCalibration()# in microns
		         img = IJF.wrap(imp)
		         print('Image Dimensions', img.dimensions, 'Calibration', cal)
		         print(Roi)
		         # An object equals True and None equals False.
		         rm = RoiManager.getInstance()
		         if (rm==None):
		            rm = RoiManager()
		         try:   
		           rm.runCommand('Delete')   
		         except:
		           pass  
		         rm.runCommand("Open", RoiName)
		         rois = rm.getRoisAsArray()
		         overlay = Overlay()
				 for (i in range(0,len(rois))):
					overlay.add(rois[i])
コード例 #30
0
def main(imp,options):
	from ij.plugin import ChannelSplitter
	from ij.gui import Roi,PointRoi, PolygonRoi, Overlay, Line
	from java.awt import Color
	from ij import WindowManager
	from ij.measure import ResultsTable
	from ij.text import TextWindow
	active_z=imp.getZ()
	imps = ChannelSplitter.split(imp)
	imp.setZ(active_z)
	roi_int = imp.getRoi()


	comp_imp=Zproj(imps[options["comp_ch"]],
		"SUM",
		active_z,
		options["z_range"])
	comp_imp=mode_subtract(comp_imp,roi_int)

	loci_imp=Zproj(imps[options["loci_ch"]],
		"SUM",
		imp.getZ(),
		options["z_range"])
	loci_imp=mode_subtract(loci_imp,roi_int)

	#Finding the boundaries of compartment and loci
	comp_roi=thresh(sum_prj=comp_imp,thresh=options["comp_T"],roi=roi_int,method="boundary")
	print "ok"
	if (options["loci_method"]== "locus center"):
		loci_roi=thresh(sum_prj=loci_imp,
			thresh=options["loci_T"],
			roi=roi_int,
			method="point")
	elif options["loci_method"]== "locus boundary":
		loci_roi=thresh(sum_prj=loci_imp,
			thresh=options["loci_T"],
			roi=roi_int,
			method="boundary")
		
	
	if options["loci_method"]== "locus center":
		dist,xc,yc,xl,yl=get_center_edge_dist(imp,comp_roi, loci_roi)
	elif options["loci_method"]== "locus boundary":
		dist,xc,yc,xl,yl=get_closest_points(imp,comp_roi,loci_roi)


	rt_exist = WindowManager.getWindow("Loci distance to compartment")
	
	if rt_exist==None or not isinstance(rt_exist, TextWindow):
		table= ResultsTable()
	else:
		table = rt_exist.getTextPanel().getOrCreateResultsTable()
	table.incrementCounter()
	table.addValue("Label", imp.title)
	table.addValue("Distance(micron)", dist)
	
	if options['measure_feret']:
		feret_roi,loci_feret,loci_area= feret(sum_prj=loci_imp,thresh=options["loci_T"],
		roi=roi_int,pixel_size=imp.getCalibration().pixelWidth)
		table.addValue("Loci feret", loci_feret)
		table.addValue("Loci area", loci_area)
		
		
	table.show("Loci distance to compartment")

	## Adding loci overlay
	ov=imp.getOverlay()
	if ov==None:
		ov=Overlay()
	line = Line(xc,yc, xl,yl)
	line.setStrokeWidth(0.2)
	line.setStrokeColor(Color.PINK)
	ov.add(line)

	
	if options["loci_method"]== "locus center":
		ov.add(PointRoi(loci_roi["x"],loci_roi["y"]))
	elif options["loci_method"]== "locus boundary":
		ov.add(loci_roi)
	if options['measure_feret']:
		ov.add(feret_roi)
	ov.add(comp_roi)
	imp.setOverlay(ov)	
コード例 #31
0
def measureFeatureLength(imp, lw = 2, csvPath=None, bAppend=True,
                         offset = -30, digits = 3,
                         font = 18, linCol = Color.YELLOW,
                         labCol = Color.WHITE,
                         bDebug = False):
    """
    measureFeatureLength(imp, lw = 2, csvPath=None, bAppend=True,
                         offset = -30, digits = 3,
                         font = 18, linCol = Color.YELLOW,
                         labCol = Color.WHITE,
                         bDebug = False)

    Manually measure the length of a feature in a calibrated ImagePlus
    and write the results to the overlay.

    Version of 2016-08-04

    Parameters
    ----------

    imp: ImagePlus
        The image to process
    lw: int (2)
        The linewidth for the line
    csvPath: string (None)
        The path to a csv file to write measurements
    bAppend: Boolean (True)
        A flag. If True new results are appended to the file 
    offset: int (-30)
        The Y offset for the label. If negative, the label will
        be written above the measurement, if positive below.
    digits: int (3)
        Round the output (in calibrated units) to this number of decimal
        points.
    font: int (18)
        The font size for the measurement.
    linCol: A color constant (Color.YELLOW)
        The color for the line in the overlay.
    labCol: A color constant (Color.WHITE)
        The color for the label
    bDebug: A Boolean (False)
        A flag to print diagnostic incormation

    Returns
    -------
    None - it does draw in the overlay of the image and write an
           optional .csv file.

    Known Issues
    ------------
    With large line widths the length of the drawn line appears lw 
    pixels too long.
    """

    # First define some convenience functions
    def resetLastMeasureCount():
        Prefs.set("JRM.meas.counter", 0)

    def GetLastMeasureCount():
        myCount = Prefs.get("JRM.meas.counter", int(-1))
        if myCount < 0:
            # it was not set, so set it to zero
            resetLastMeasureCount()
            return 0
        else:
            myCount = int(myCount)
            return myCount

    def setLastMeasureCount(count):
        count = int(count)
        Prefs.set("JRM.meas.counter", count)


    imp = IJ.getImage()
    if imp == None:
        print("You need an image...")
        return
    else:
        roi = imp.getRoi()
        if roi != None:
            if roi.getType() == Roi.LINE:
                # print(roi)
                cal = imp.getCalibration()
                # print(cal)
                unit = cal.getUnits()
                width = cal.pixelWidth
                height = cal.pixelHeight
                x1 = roi.x1 * width
                y1 = roi.y1 * height
                x2 = roi.x2 * width
                y2 = roi.y2 * height
                length = sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));
                if bDebug:
                    sOut = "X1: %d Y1 %d X2 %d Y2 %d" % (roi.x1, roi.y1,
                                                         roi.x2, roi.y2)
                    print(sOut)
                    print(length, unit)
                    
                ip = imp.getProcessor()
                ip.setColor(linCol)
                oldLW = ip.getLineWidth()
                ip.setLineWidth(lw)
                ip.drawLine(roi.x1, roi.y1, roi.x2, roi.y2)
                ip.setLineWidth(oldLW)
                imp.updateAndDraw()
                ol = imp.getOverlay()
                if ol == None:
                    ol = Overlay()
                res = imp.duplicate()
                # first a dummy text ROI to set the font
                tr = TextRoi(10, 10, "Foo")
                tr.setColor(labCol)
                tr.setFont("SanSerif", font, 1) 
                tr.setJustification(TextRoi.CENTER)
                tr.setAntialiased(True)
                # explicitly save preferences
                Prefs.savePreferences()
                xL = roi.x1 + roi.x2
                xL /= 2
                if offset < 0:
                    yL = min(roi.y1, roi.y2)
                    yL += offset
                else:
                    yL = max(roi.y1, roi.y2)
                    yL += offset
                length = round(length, 3)
                label = "%g %s" % (length, unit)
                tr = TextRoi(xL, yL, label)
                tr.setColor(labCol)
                tr.setFont("SanSerif", font, 1) 
                tr.setJustification(TextRoi.CENTER)
                tr.setAntialiased(True)
                ol.add(tr)
                imp.setOverlay(ol)
                imp.show()
                if csvPath != None:
                    if bAppend:
                        if os.path.isfile(csvPath):
                            theCount = GetLastMeasureCount() + 1
                            f=open(csvPath, 'a')
                        else:
                            f=open(csvPath, 'w')
                            resetLastMeasureCount()
                            theCount = 1
                            strLine = 'img, num, length (%s)\n' % unit
                            f.write(strLine)
                    else:
                        f=open(csvPath, 'w')
                        resetLastMeasureCount()
                        theCount = 1
                        strLine = 'img, num, length (%s)\n' % unit
                        f.write(strLine)
                    strLine = "%s, %d, %.6f\n" % (imp.getShortTitle(), theCount, length)
                    f.write(strLine)
                    f.close()
                    setLastMeasureCount(theCount)
                strMsg = "measured %s count = %d" % (imp.getShortTitle(), theCount)
                print(strMsg)

            else:
                print("You need a line ROI")

            # finally deselect
            IJ.run("Select None")
コード例 #32
0
ファイル: AIS_Analysis.py プロジェクト: ksiller/axonanalyzer
outputdir = str(outputdir)
ais_method = ais_method.lower()
ais_threshold /=100
if not path.isdir(inputdir):
    print inputdir, 'does not exist or is not a directory.'
else:
	summary_rt = ResultsTable.getResultsTable(AIS_SUMMARY_TABLE)
	if summary_rt is None:
	    summary_rt = ResultsTable()
	elif clear_summary:
		summary_rt.reset()
	if not path.isdir(outputdir):
		os.makedirs(outputdir)
	file_pairs = get_file_pairs(inputdir)
	for item in file_pairs:
		overlay = Overlay()
		composite,imps = open_image(item['img'])
		rois = load_rois(item['roi'])
		if len(imps) < ais_chno or len(imps) < nucleus_chno:
		    print 'Image %s has %d channels. Cannot process AIS segmentation for channel %d. Skipping.' % (item['img'], len(imps), ais_chno) 
		else:
			if show_img:
				composite.show()
				#for i in imps:
				#	i.show()
			results, background = process_image(imps, rois, ais_chno, nucleus_chno, bg_roino=3, average=average, sample_width=ais_linewidth, method=ais_method, threshold=ais_threshold)
			for roiresult in results:
				ais_roi = roiresult['ais-roi']
				nucleus_roi = roiresult['nucleus-roi']
				ais_image = roiresult['ais-image']
				overlay.add(ais_roi)
コード例 #33
0
    results.addValue("stdev", stdev.getRealDouble())
    results.addValue("sum", sum.getRealDouble())
    results.addValue("comment", comment)

# Display the table
results.show("Results")

# Outline and highlight the regions
outline = ops.run("morphology.outline", binary, False)
image_imp = ImageJFunctions.wrap(image, "Overlay Render")
binary_imp = ImageJFunctions.wrap(binary, "Binary")
outline_imp = ImageJFunctions.wrap(outline, "Outline")

IJ.run(binary_imp, "Green", "")
binary_ROI = ImageRoi(0, 0, binary_imp.getProcessor())
binary_ROI.setZeroTransparent(True)
binary_ROI.setOpacity(0.25)

IJ.run(outline_imp, "Green", "")
outline_ROI = ImageRoi(0, 0, outline_imp.getProcessor())
outline_ROI.setZeroTransparent(True)
outline_ROI.setOpacity(1.00)

overlay = Overlay()
overlay.add(binary_ROI)
overlay.add(outline_ROI)

image_imp.setOverlay(overlay)
image_imp.updateAndDraw()
image_imp.show()
コード例 #34
0
def run(imp, preprocessor_path, postprocessor_path, threshold_method,
        user_comment):

    output_parameters = {
        "image title": "",
        "preprocessor path": float,
        "post processor path": float,
        "thresholding op": float,
        "use ridge detection": bool,
        "high contrast": int,
        "low contrast": int,
        "line width": int,
        "minimum line length": int,
        "mitochondrial footprint": float,
        "branch length mean": float,
        "branch length median": float,
        "branch length stdevp": float,
        "summed branch lengths mean": float,
        "summed branch lengths median": float,
        "summed branch lengths stdevp": float,
        "network branches mean": float,
        "network branches median": float,
        "network branches stdevp": float
    }

    output_order = [
        "image title", "preprocessor path", "post processor path",
        "thresholding op", "use ridge detection", "high contrast",
        "low contrast", "line width", "minimum line length",
        "mitochondrial footprint", "branch length mean",
        "branch length median", "branch length stdevp",
        "summed branch lengths mean", "summed branch lengths median",
        "summed branch lengths stdevp", "network branches mean",
        "network branches median", "network branches stdevp"
    ]

    # Perform any preprocessing steps...
    status.showStatus("Preprocessing image...")
    if preprocessor_path != None:
        if preprocessor_path.exists():
            preprocessor_thread = scripts.run(preprocessor_path, True)
            preprocessor_thread.get()
            imp = WindowManager.getCurrentImage()
    else:
        pass

    # Store all of the analysis parameters in the table
    if preprocessor_path == None:
        preprocessor_str = ""
    else:
        preprocessor_str = preprocessor_path.getCanonicalPath()
    if postprocessor_path == None:
        postprocessor_str = ""
    else:
        postprocessor_str = preprocessor_path.getCanonicalPath()

    output_parameters["preprocessor path"] = preprocessor_str
    output_parameters["post processor path"] = postprocessor_str
    output_parameters["thresholding op"] = threshold_method
    output_parameters["use ridge detection"] = str(use_ridge_detection)
    output_parameters["high contrast"] = rd_max
    output_parameters["low contrast"] = rd_min
    output_parameters["line width"] = rd_width
    output_parameters["minimum line length"] = rd_length

    # Create and ImgPlus copy of the ImagePlus for thresholding with ops...
    status.showStatus("Determining threshold level...")
    imp_title = imp.getTitle()
    slices = imp.getNSlices()
    frames = imp.getNFrames()
    output_parameters["image title"] = imp_title
    imp_calibration = imp.getCalibration()
    imp_channel = Duplicator().run(imp, imp.getChannel(), imp.getChannel(), 1,
                                   slices, 1, frames)
    img = ImageJFunctions.wrap(imp_channel)

    # Determine the threshold value if not manual...
    binary_img = ops.run("threshold.%s" % threshold_method, img)
    binary = ImageJFunctions.wrap(binary_img, 'binary')
    binary.setCalibration(imp_calibration)
    binary.setDimensions(1, slices, 1)

    # Get the total_area
    if binary.getNSlices() == 1:
        area = binary.getStatistics(Measurements.AREA).area
        area_fraction = binary.getStatistics(
            Measurements.AREA_FRACTION).areaFraction
        output_parameters[
            "mitochondrial footprint"] = area * area_fraction / 100.0
    else:
        mito_footprint = 0.0
        for slice in range(binary.getNSlices()):
            binary.setSliceWithoutUpdate(slice)
            area = binary.getStatistics(Measurements.AREA).area
            area_fraction = binary.getStatistics(
                Measurements.AREA_FRACTION).areaFraction
            mito_footprint += area * area_fraction / 100.0
        output_parameters[
            "mitochondrial footprint"] = mito_footprint * imp_calibration.pixelDepth

    # Generate skeleton from masked binary ...
    # Generate ridges first if using Ridge Detection
    if use_ridge_detection and (imp.getNSlices() == 1):
        skeleton = ridge_detect(imp, rd_max, rd_min, rd_width, rd_length)
    else:
        skeleton = Duplicator().run(binary)
        IJ.run(skeleton, "Skeletonize (2D/3D)", "")

    # Analyze the skeleton...
    status.showStatus("Setting up skeleton analysis...")
    skel = AnalyzeSkeleton_()
    skel.setup("", skeleton)
    status.showStatus("Analyzing skeleton...")
    skel_result = skel.run()

    status.showStatus("Computing graph based parameters...")
    branch_lengths = []
    summed_lengths = []
    graphs = skel_result.getGraph()

    for graph in graphs:
        summed_length = 0.0
        edges = graph.getEdges()
        for edge in edges:
            length = edge.getLength()
            branch_lengths.append(length)
            summed_length += length
        summed_lengths.append(summed_length)

    output_parameters["branch length mean"] = eztables.statistical.average(
        branch_lengths)
    output_parameters["branch length median"] = eztables.statistical.median(
        branch_lengths)
    output_parameters["branch length stdevp"] = eztables.statistical.stdevp(
        branch_lengths)

    output_parameters[
        "summed branch lengths mean"] = eztables.statistical.average(
            summed_lengths)
    output_parameters[
        "summed branch lengths median"] = eztables.statistical.median(
            summed_lengths)
    output_parameters[
        "summed branch lengths stdevp"] = eztables.statistical.stdevp(
            summed_lengths)

    branches = list(skel_result.getBranches())
    output_parameters["network branches mean"] = eztables.statistical.average(
        branches)
    output_parameters["network branches median"] = eztables.statistical.median(
        branches)
    output_parameters["network branches stdevp"] = eztables.statistical.stdevp(
        branches)

    # Create/append results to a ResultsTable...
    status.showStatus("Display results...")
    if "Mito Morphology" in list(WindowManager.getNonImageTitles()):
        rt = WindowManager.getWindow(
            "Mito Morphology").getTextPanel().getOrCreateResultsTable()
    else:
        rt = ResultsTable()

    rt.incrementCounter()
    for key in output_order:
        rt.addValue(key, str(output_parameters[key]))

    # Add user comments intelligently
    if user_comment != None and user_comment != "":
        if "=" in user_comment:
            comments = user_comment.split(",")
            for comment in comments:
                rt.addValue(comment.split("=")[0], comment.split("=")[1])
        else:
            rt.addValue("Comment", user_comment)

    rt.show("Mito Morphology")

    # Create overlays on the original ImagePlus and display them if 2D...
    if imp.getNSlices() == 1:
        status.showStatus("Generate overlays...")
        IJ.run(skeleton, "Green", "")
        IJ.run(binary, "Magenta", "")

        skeleton_ROI = ImageRoi(0, 0, skeleton.getProcessor())
        skeleton_ROI.setZeroTransparent(True)
        skeleton_ROI.setOpacity(1.0)
        binary_ROI = ImageRoi(0, 0, binary.getProcessor())
        binary_ROI.setZeroTransparent(True)
        binary_ROI.setOpacity(0.25)

        overlay = Overlay()
        overlay.add(binary_ROI)
        overlay.add(skeleton_ROI)

        imp.setOverlay(overlay)
        imp.updateAndDraw()

    # Generate a 3D model if a stack
    if imp.getNSlices() > 1:

        univ = Image3DUniverse()
        univ.show()

        pixelWidth = imp_calibration.pixelWidth
        pixelHeight = imp_calibration.pixelHeight
        pixelDepth = imp_calibration.pixelDepth

        # Add end points in yellow
        end_points = skel_result.getListOfEndPoints()
        end_point_list = []
        for p in end_points:
            end_point_list.append(
                Point3f(p.x * pixelWidth, p.y * pixelHeight, p.z * pixelDepth))
        univ.addIcospheres(end_point_list, Color3f(255.0, 255.0, 0.0), 2,
                           1 * pixelDepth, "endpoints")

        # Add junctions in magenta
        junctions = skel_result.getListOfJunctionVoxels()
        junction_list = []
        for p in junctions:
            junction_list.append(
                Point3f(p.x * pixelWidth, p.y * pixelHeight, p.z * pixelDepth))
        univ.addIcospheres(junction_list, Color3f(255.0, 0.0, 255.0), 2,
                           1 * pixelDepth, "junctions")

        # Add the lines in green
        graphs = skel_result.getGraph()
        for graph in range(len(graphs)):
            edges = graphs[graph].getEdges()
            for edge in range(len(edges)):
                branch_points = []
                for p in edges[edge].getSlabs():
                    branch_points.append(
                        Point3f(p.x * pixelWidth, p.y * pixelHeight,
                                p.z * pixelDepth))
                univ.addLineMesh(branch_points, Color3f(0.0, 255.0, 0.0),
                                 "branch-%s-%s" % (graph, edge), True)

        # Add the surface
        univ.addMesh(binary)
        univ.getContent("binary").setTransparency(0.5)

    # Perform any postprocessing steps...
    status.showStatus("Running postprocessing...")
    if postprocessor_path != None:
        if postprocessor_path.exists():
            postprocessor_thread = scripts.run(postprocessor_path, True)
            postprocessor_thread.get()

    else:
        pass

    status.showStatus("Done analysis!")
コード例 #35
0
ファイル: peakfinder.py プロジェクト: cmci/ijmacros
from ij.gui import Roi, Overlay

c = RConnection()
x = c.eval("R.version.string")
print x.asString()
print "Loaded Package:", c.eval("library(Peaks)").asString()

imp = IJ.getImage()
roi = imp.getRoi()
if roi.getType() == Roi.LINE:
	print "a line roi found"
	profile = roi.getPixels()
	c.assign("prof", profile)
#	pks = c.eval("SpectrumSearch(prof, sigma=1, threshold=25, background=TRUE, iterations=20, markov=TRUE, window=5)").asList()
#	pks = c.eval("SpectrumSearch(prof, sigma=3, threshold=25, background=TRUE, iterations=20, markov=TRUE, window=5)").asList()
#	pks = c.eval("SpectrumSearch(prof, sigma=3, threshold=2, background=TRUE, iterations=20, markov=TRUE, window=2)").asList()
	pks = c.eval("SpectrumSearch(prof, sigma=2, threshold=2, background=TRUE, iterations=20, markov=FALSE, window=2)").asList()

	pksX = pks[0].asIntegers()
	rois = []
	print "Number of Peaks:", len(pksX)
	for i in pksX:
		#print "\t", roi.x1, i
		rois.append(PointRoi(roi.x1, roi.y1 + i))
	ol = Overlay() 
	for aroi in rois:
		ol.add(aroi)
	imp.setOverlay(ol)
	
c.close()
コード例 #36
0
zero = img.randomAccess().get().createVariable()

# Run the difference of Gaussian
cell = 30.0  # microns in diameter
min_peak = 10.0  # min intensity for a peak to be considered
dog = DogDetection(
    Views.extendValue(img, zero),
    img,
    [cal.pixelWidth, cal.pixelHeight],
    cell / 2,
    cell,
    DogDetection.ExtremaType.MAXIMA,  #MAXIMA
    min_peak,
    False,
    DoubleType())

peaks = dog.getPeaks()
roi = OvalRoi(0, 0, cell / cal.pixelWidth, cell / cal.pixelHeight)
print('Number of cells = ', len(peaks))
p = zeros(img.numDimensions(), 'i')
overlay = Overlay()
imp.setOverlay(overlay)
for peak in peaks:
    # Read peak coordinates into an array of integers
    peak.localize(p)
    if (boundRect.contains(p[0], p[1])):
        oval = OvalRoi(p[0], p[1], cell / cal.pixelWidth,
                       cell / cal.pixelHeight)
        oval.setColor(Color.RED)
        overlay.add(oval)
コード例 #37
0
impProc.flipVertical()
impProc = impProc.rotateRight()
impProc.smooth()
impProc.setInterpolationMethod(ImageProcessor.NONE)
impProc = impProc.resize(canvasWidth,canvasHeight)
imp.setProcessor(impProc)
imp.show()

IJ.run(imp, "Rainbow RGB", "");
IJ.run(imp, "Canvas Size...", "width=800 height=1024 position=Top-Center zero");

testROI = Roi(0,canvasHeight,canvasWidth,6)
testROI.setFillColor(Color.WHITE)
imp.setRoi(testROI,True)

overlay = Overlay(testROI)
font = Font("SansSerif",Font.PLAIN,fontSize)

# Write the EmissionWavelengths according
# to the metadata read earlier.
for i in xrange(1,len(pixelInt2[0]),tickInterval):
    pixelSize = (canvasWidth/(len(pixelInt2[0])*1.0))
    calc      = (pixelSize)*(i)
    roi       = TextRoi(calc+(pixelSize*0.2),canvasHeight+10,str(emissionWL[i]),font)
    roi.setStrokeColor(Color(1.00, 1.00, 1.00));
    overlay.add(roi)

imp.setOverlay(overlay)
imp.show()
IJ.run(imp, "Calibration Bar...", "location=[Upper Right] fill=None label=White number=3 decimal=1 font=9 zoom=2 bold overlay");
コード例 #38
0
ファイル: Myxo_Track.py プロジェクト: leec13/MorphoBactPy
gw = CellsSelection()
gw.setTitle(imp.getTitle())
gw.run(dictRois.keys(), pathdir)
gw.show()
gw.setSelected(dictRois.keys())
while not gw.oked and gw.isShowing() : 
	gw.setLabel("Validate selection with OK !!")
	listcellname = list(gw.getSelected())
gw.resetok()
gw.setLabel("...")
gw.hide()

rm.runCommand("reset")

if imp.getOverlay() is not None : imp.getOverlay().clear()
overlay=Overlay()
imp.setOverlay(overlay)
gd0=NonBlockingGenericDialog("settings")
gd0.addCheckbox("Show the overlay during the process ? (slow option)", False)
gd0.addNumericField("Minimal Lifetime  : ",10,0)
gd0.addNumericField("Minimal distance to reversion  : ",4,0)
gd0.addNumericField("Sub sampling ?  : ",1,0)
gd0.addNumericField("Radius for fluo tracking ?  : ",8,0)
gd0.showDialog()

isShow = gd0.getNextBoolean()
minLife = gd0.getNextNumber()
mind = gd0.getNextNumber()
subs = gd0.getNextNumber()
rayon = gd0.getNextNumber()
コード例 #39
0
def run(imp, preprocessor_path, postprocessor_path, threshold_method, user_comment):

    output_parameters = {"image title" : "",
    "preprocessor path" : float,
    "post processor path" : float,
    "thresholding op" : float,
    "use ridge detection" : bool,
    "high contrast" : int,
    "low contrast" : int,
    "line width" : int,
    "minimum line length" : int,
    "mitochondrial footprint" : float,
    "branch length mean" : float,
    "branch length median" : float,
    "branch length stdevp" : float,
    "summed branch lengths mean" : float,
    "summed branch lengths median" : float,
    "summed branch lengths stdevp" : float,
    "network branches mean" : float,
    "network branches median" : float,
    "network branches stdevp" : float}

    output_order = ["image title",
    "preprocessor path",
    "post processor path",
    "thresholding op",
    "use ridge detection",
    "high contrast",
    "low contrast",
    "line width",
    "minimum line length",
    "mitochondrial footprint",
    "branch length mean",
    "branch length median",
    "branch length stdevp",
    "summed branch lengths mean",
    "summed branch lengths median",
    "summed branch lengths stdevp",
    "network branches mean",
    "network branches median",
    "network branches stdevp"]

    # Perform any preprocessing steps...
    status.showStatus("Preprocessing image...")
    if preprocessor_path != None:
        if preprocessor_path.exists():
            preprocessor_thread = scripts.run(preprocessor_path, True)
            preprocessor_thread.get()
            imp = WindowManager.getCurrentImage()
    else:
        pass

    # Store all of the analysis parameters in the table
    if preprocessor_path == None:
        preprocessor_str = ""
    else:
        preprocessor_str = preprocessor_path.getCanonicalPath()
    if postprocessor_path == None:
        postprocessor_str = ""
    else:
        postprocessor_str = preprocessor_path.getCanonicalPath()

    output_parameters["preprocessor path"] = preprocessor_str
    output_parameters["post processor path"] = postprocessor_str
    output_parameters["thresholding op"] = threshold_method
    output_parameters["use ridge detection"] = str(use_ridge_detection)
    output_parameters["high contrast"] = rd_max
    output_parameters["low contrast"] = rd_min
    output_parameters["line width"] = rd_width
    output_parameters["minimum line length"] = rd_length

    # Create and ImgPlus copy of the ImagePlus for thresholding with ops...
    status.showStatus("Determining threshold level...")
    imp_title = imp.getTitle()
    slices = imp.getNSlices()
    frames = imp.getNFrames()
    output_parameters["image title"] = imp_title
    imp_calibration = imp.getCalibration()
    imp_channel = Duplicator().run(imp, imp.getChannel(), imp.getChannel(), 1, slices, 1, frames)
    img = ImageJFunctions.wrap(imp_channel)

    # Determine the threshold value if not manual...
    binary_img = ops.run("threshold.%s"%threshold_method, img)
    binary = ImageJFunctions.wrap(binary_img, 'binary')
    binary.setCalibration(imp_calibration)
    binary.setDimensions(1, slices, 1)

    # Get the total_area
    if binary.getNSlices() == 1:
        area = binary.getStatistics(Measurements.AREA).area
        area_fraction = binary.getStatistics(Measurements.AREA_FRACTION).areaFraction
        output_parameters["mitochondrial footprint"] =  area * area_fraction / 100.0
    else:
        mito_footprint = 0.0
        for slice in range(binary.getNSlices()):
            	binary.setSliceWithoutUpdate(slice)
                area = binary.getStatistics(Measurements.AREA).area
                area_fraction = binary.getStatistics(Measurements.AREA_FRACTION).areaFraction
                mito_footprint += area * area_fraction / 100.0
        output_parameters["mitochondrial footprint"] = mito_footprint * imp_calibration.pixelDepth

    # Generate skeleton from masked binary ...
    # Generate ridges first if using Ridge Detection
    if use_ridge_detection and (imp.getNSlices() == 1):
        skeleton = ridge_detect(imp, rd_max, rd_min, rd_width, rd_length)
    else:
        skeleton = Duplicator().run(binary)
        IJ.run(skeleton, "Skeletonize (2D/3D)", "")

    # Analyze the skeleton...
    status.showStatus("Setting up skeleton analysis...")
    skel = AnalyzeSkeleton_()
    skel.setup("", skeleton)
    status.showStatus("Analyzing skeleton...")
    skel_result = skel.run()

    status.showStatus("Computing graph based parameters...")
    branch_lengths = []
    summed_lengths = []
    graphs = skel_result.getGraph()

    for graph in graphs:
        summed_length = 0.0
        edges = graph.getEdges()
        for edge in edges:
            length = edge.getLength()
            branch_lengths.append(length)
            summed_length += length
        summed_lengths.append(summed_length)

    output_parameters["branch length mean"] = eztables.statistical.average(branch_lengths)
    output_parameters["branch length median"] = eztables.statistical.median(branch_lengths)
    output_parameters["branch length stdevp"] = eztables.statistical.stdevp(branch_lengths)

    output_parameters["summed branch lengths mean"] = eztables.statistical.average(summed_lengths)
    output_parameters["summed branch lengths median"] = eztables.statistical.median(summed_lengths)
    output_parameters["summed branch lengths stdevp"] = eztables.statistical.stdevp(summed_lengths)

    branches = list(skel_result.getBranches())
    output_parameters["network branches mean"] = eztables.statistical.average(branches)
    output_parameters["network branches median"] = eztables.statistical.median(branches)
    output_parameters["network branches stdevp"] = eztables.statistical.stdevp(branches)

    # Create/append results to a ResultsTable...
    status.showStatus("Display results...")
    if "Mito Morphology" in list(WindowManager.getNonImageTitles()):
        rt = WindowManager.getWindow("Mito Morphology").getTextPanel().getOrCreateResultsTable()
    else:
        rt = ResultsTable()

    rt.incrementCounter()
    for key in output_order:
        rt.addValue(key, str(output_parameters[key]))

    # Add user comments intelligently
    if user_comment != None and user_comment != "":
        if "=" in user_comment:
            comments = user_comment.split(",")
            for comment in comments:
                rt.addValue(comment.split("=")[0], comment.split("=")[1])
        else:
            rt.addValue("Comment", user_comment)

    rt.show("Mito Morphology")

	# Create overlays on the original ImagePlus and display them if 2D...
    if imp.getNSlices() == 1:
        status.showStatus("Generate overlays...")
        IJ.run(skeleton, "Green", "")
        IJ.run(binary, "Magenta", "")

        skeleton_ROI = ImageRoi(0,0,skeleton.getProcessor())
        skeleton_ROI.setZeroTransparent(True)
        skeleton_ROI.setOpacity(1.0)
        binary_ROI = ImageRoi(0,0,binary.getProcessor())
        binary_ROI.setZeroTransparent(True)
        binary_ROI.setOpacity(0.25)

        overlay = Overlay()
        overlay.add(binary_ROI)
        overlay.add(skeleton_ROI)

        imp.setOverlay(overlay)
        imp.updateAndDraw()

    # Generate a 3D model if a stack
    if imp.getNSlices() > 1:

        univ = Image3DUniverse()
        univ.show()

        pixelWidth = imp_calibration.pixelWidth
        pixelHeight = imp_calibration.pixelHeight
        pixelDepth = imp_calibration.pixelDepth

        # Add end points in yellow
        end_points = skel_result.getListOfEndPoints()
        end_point_list = []
        for p in end_points:
            end_point_list.append(Point3f(p.x * pixelWidth, p.y * pixelHeight, p.z * pixelDepth))
        univ.addIcospheres(end_point_list, Color3f(255.0, 255.0, 0.0), 2, 1*pixelDepth, "endpoints")

        # Add junctions in magenta
        junctions = skel_result.getListOfJunctionVoxels()
        junction_list = []
        for p in junctions:
            junction_list.append(Point3f(p.x * pixelWidth, p.y * pixelHeight, p.z * pixelDepth))
        univ.addIcospheres(junction_list, Color3f(255.0, 0.0, 255.0), 2, 1*pixelDepth, "junctions")

        # Add the lines in green
        graphs = skel_result.getGraph()
        for graph in range(len(graphs)):
            edges = graphs[graph].getEdges()
            for edge in range(len(edges)):
                branch_points = []
                for p in edges[edge].getSlabs():
                    branch_points.append(Point3f(p.x * pixelWidth, p.y * pixelHeight, p.z * pixelDepth))
                univ.addLineMesh(branch_points, Color3f(0.0, 255.0, 0.0), "branch-%s-%s"%(graph, edge), True)

        # Add the surface
        univ.addMesh(binary)
        univ.getContent("binary").setTransparency(0.5)

    # Perform any postprocessing steps...
    status.showStatus("Running postprocessing...")
    if postprocessor_path != None:
        if postprocessor_path.exists():
            postprocessor_thread = scripts.run(postprocessor_path, True)
            postprocessor_thread.get()

    else:
        pass

    status.showStatus("Done analysis!")
コード例 #40
0
def poreDetectionUV(inputImp, inputDataset, inputRoi, ops, data, display, detectionParameters):
	
	title =  inputImp.getTitle()
	title=title.replace('UV', 'SD')
	
	print title
	
	#trueColorImp= WindowManager.getImage(title)
	#print type( trueColorImp)
	
	# calculate are of roi 
	stats=inputImp.getStatistics()
	inputRoiArea=stats.area
	
	print inputRoi
	
	# get the bounding box of the active roi
	inputRec = inputRoi.getBounds()
	x1=long(inputRec.getX())
	y1=long(inputRec.getY())
	x2=x1+long(inputRec.getWidth())-1
	y2=y1+long(inputRec.getHeight())-1

	print x1
	print y1
	print x2
	print y2
	
	# crop the roi
	interval=FinalInterval( array([x1, y1 ,0], 'l'), array([x2, y2, 2], 'l') )
	cropped=ops.crop(interval, None, inputDataset.getImgPlus() ) 
	
	datacropped=data.create(cropped)
	display.createDisplay("cropped", datacropped)
	croppedPlus=IJ.getImage()
	
	duplicator=Duplicator()
	substackMaker=SubstackMaker()
	
	# duplicate the roi
	duplicate=duplicator.run(croppedPlus)
	#duplicate.show()
	
	# convert duplicate of roi to HSB and get brightness
	IJ.run(duplicate, "HSB Stack", "");
	brightnessPlus=substackMaker.makeSubstack(duplicate, "3-3")
	brightness=ImgPlus(ImageJFunctions.wrapByte(brightnessPlus))
	brightnessPlus.setTitle("Brightness")
	#brightnessPlus.show()
	
	# make another duplicate, split channels and get red
	duplicate=duplicator.run(croppedPlus)
	channels=ChannelSplitter().split(duplicate)
	redPlus=channels[0]
	red=ImgPlus(ImageJFunctions.wrapByte(redPlus))
	redPlus.show()
	
	# convert to lab
	IJ.run(croppedPlus, "Color Transformer", "colour=Lab")
	IJ.selectWindow('Lab')
	labPlus=IJ.getImage()
	
	# get the A channel
	APlus=substackMaker.makeSubstack(labPlus, "2-2")
	APlus.setTitle('A')
	APlus.show()
	APlus.getProcessor().resetMinAndMax()
	APlus.updateAndDraw()
	AThresholded=threshold(APlus, -10, 50)
	
	# get the B channel
	BPlus=substackMaker.makeSubstack(labPlus, "3-3")
	BPlus.setTitle('B')
	BPlus.show()
	BPlus.getProcessor().resetMinAndMax()
	BPlus.updateAndDraw()
	BThresholded=threshold(BPlus, -10, 50)
	
	# AND the Athreshold and Bthreshold to get a map of the red pixels
	ic = ImageCalculator();
	redMask = ic.run("AND create", AThresholded, BThresholded);
	IJ.run(redMask, "Divide...", "value=255");
	#redMask.show()
	
	labPlus.close()
	
	# threshold the spots from the red channel
	thresholdedred=SpotDetectionGray(red, data, display, ops, False)
	display.createDisplay("thresholdedred", data.create(thresholdedred))
	impthresholdedred = ImageJFunctions.wrap(thresholdedred, "wrapped")
	
	# threshold the spots from the brightness channel
	thresholded=SpotDetectionGray(brightness, data, display, ops, False)
	display.createDisplay("thresholded", data.create(thresholded))
	impthresholded=ImageJFunctions.wrap(thresholded, "wrapped")
	
	# or the thresholding results from red and brightness channel
	impthresholded = ic.run("OR create", impthresholded, impthresholdedred);
	
	# convert to mask
	Prefs.blackBackground = True
	IJ.run(impthresholded, "Convert to Mask", "")
	
	# clear the region outside the roi
	clone=inputRoi.clone()
	clone.setLocation(0,0)
	Utility.clearOutsideRoi(impthresholded, clone)
	
	# create a hidden roi manager
	roim = RoiManager(True)
	
	# count the particlesimp.getProcessor().setColor(Color.green)
	countParticles(impthresholded, roim, detectionParameters.minSize, detectionParameters.maxSize, detectionParameters.minCircularity, detectionParameters.maxCircularity)
	
	# define a function to determine the percentage of pixels that are foreground in a binary image
	# inputs:
	#    imp: binary image, 0=background, 1=foreground
	#    roi: an roi
	def isRed(imp, roi):
		stats = imp.getStatistics()
	
		if (stats.mean>detectionParameters.redPercentage): return True
		else: return False
	
	def notRed(imp, roi):
		stats = imp.getStatistics()
	
		if (stats.mean>detectionParameters.redPercentage): return False
		else: return True

	allList=[]

	for roi in roim.getRoisAsArray():
		allList.append(roi.clone())
	
	# count particles that are red
	redList=CountParticles.filterParticlesWithFunction(redMask, allList, isRed)
	# count particles that are red
	blueList=CountParticles.filterParticlesWithFunction(redMask, allList, notRed)

	print "Total particles: "+str(len(allList))
	print "Filtered particles: "+str(len(redList))

	# for each roi add the offset such that the roi is positioned in the correct location for the 
	# original image
	[roi.setLocation(roi.getXBase()+x1, roi.getYBase()+y1) for roi in allList]
	
	# create an overlay and add the rois
	overlay1=Overlay()
		
	inputRoi.setStrokeColor(Color.green)
	overlay1.add(inputRoi)
	[CountParticles.addParticleToOverlay(roi, overlay1, Color.red) for roi in redList]
	[CountParticles.addParticleToOverlay(roi, overlay1, Color.cyan) for roi in blueList]
	
	def drawAllRoisOnImage(imp, mainRoi, redList, blueList):
		imp.getProcessor().setColor(Color.green)
		IJ.run(imp, "Line Width...", "line=3");
		imp.getProcessor().draw(inputRoi)
		imp.updateAndDraw()
		IJ.run(imp, "Line Width...", "line=1");
		[CountParticles.drawParticleOnImage(imp, roi, Color.magenta) for roi in redList]
		[CountParticles.drawParticleOnImage(imp, roi, Color.green) for roi in blueList]
		imp.updateAndDraw()
	
	drawAllRoisOnImage(inputImp, inputRoi, redList, blueList)
	#drawAllRoisOnImage(trueColorImp, inputRoi, redList, blueList)
	
	# draw overlay
	#inputImp.setOverlay(overlay1)
	#inputImp.updateAndDraw()
	
	statsdict=CountParticles.calculateParticleStats(APlus, BPlus, redMask, roim.getRoisAsArray())
	
	print inputRoiArea

	areas=statsdict['Areas']
	poreArea=0
	for area in areas:
		poreArea=poreArea+area

	ATotal=0
	ALevels=statsdict['ALevel']
	for A in ALevels:
		ATotal=ATotal+A

	AAverage=ATotal/len(ALevels)

	BTotal=0
	BLevels=statsdict['BLevel']
	for B in BLevels:
		BTotal=BTotal+B

	BAverage=BTotal/len(BLevels)

	redTotal=0
	redPercentages=statsdict['redPercentage']
	for red in redPercentages:
		redTotal=redTotal+red

	redAverage=redTotal/len(redPercentages)
	pixwidth=inputImp.getCalibration().pixelWidth

	inputRoiArea=inputRoiArea/(pixwidth*pixwidth)
	
	print str(len(allList))+" "+str(len(redList))+" "+str(len(blueList))+" "+str(poreArea/inputRoiArea)+" "+str(redAverage)
コード例 #41
0
def batch_open_images(pathImage, file_typeImage, name_filterImage=None):

    if isinstance(pathImage, File):
        pathImage = pathImage.getAbsolutePath()

    def check_filter(string):
        '''This function is used to check for a given filter.
        It is possible to use a single string or a list/tuple of strings as filter.
        This function can access the variables of the surrounding function.
        :param string: The filename to perform the filtering on.
        '''
        if name_filterImage:
            # The first branch is used if name_filter is a list or a tuple.
            if isinstance(name_filterImage, (list, tuple)):
                for name_filter_ in name_filterImage:
                    if name_filter_ in string:
                        # Exit the function with True.

                        return True
                    else:
                        # Next iteration of the for loop.
                        continue
            # The second branch is used if name_filter is a string.
            elif isinstance(name_filterImage, string):
                if name_filterImage in string:
                    return True
                else:
                    return False
            return False
        else:
            # Accept all files if name_filter is None.
            return True

    def check_type(string):
        '''This function is used to check the file type.
        It is possible to use a single string or a list/tuple of strings as filter.
        This function can access the variables of the surrounding function.
        :param string: The filename to perform the check on.
        '''
        if file_typeImage:
            # The first branch is used if file_type is a list or a tuple.
            if isinstance(file_typeImage, (list, tuple)):
                for file_type_ in file_typeImage:
                    if string.endswith(file_type_):
                        # Exit the function with True.
                        return True
                    else:
                        # Next iteration of the for loop.
                        continue
            # The second branch is used if file_type is a string.
            elif isinstance(file_typeImage, string):
                if string.endswith(file_typeImage):
                    return True
                else:
                    return False
            return False
        # Accept all files if file_type is None.
        else:
            return True

    # We collect all files to open in a list.
    path_to_Image = []
    # Replacing some abbreviations (e.g. $HOME on Linux).
    path = os.path.expanduser(pathImage)
    path = os.path.expandvars(pathImage)
    # If we don't want a recursive search, we can use os.listdir().

    for directory, dir_names, file_names in os.walk(pathImage):
        # We are only interested in files.
        for file_name in file_names:
            # The list contains only the file names.
            # The full path needs to be reconstructed.
            full_path = os.path.join(directory, file_name)
            # Both checks are performed to filter the files.
            if check_type(file_name):
                if check_filter(file_name) is False:
                    # Add the file to the list of images to open.
                    path_to_Image.append([
                        full_path,
                        os.path.basename(os.path.splitext(full_path)[0])
                    ])
    Images = []

    for img_path, file_name in path_to_Image:

        imp = IJ.openImage(img_path)
        maskimage = ops.run("create.img", imp)
        cursor = maskimage.localizingCursor()
        imp.show()
        IJ.run("Select None")
        overlay = imp.getOverlay()
        if overlay == None:

            overlay = Overlay()
            imp.setOverlay(overlay)
        else:

            overlay.clear()

        imp.updateAndDraw()
        impY = imp.getHeight()
        impX = imp.getWidth()
        print(impY, impX)
        rm = RoiManager.getInstance()
        if not rm:
            rm = RoiManager()

        rm.runCommand("reset")
        WaitForUserDialog("Select the landmark and the second point").show()
        rm.runCommand("Add")
        roi_points = rm.getRoisAsArray()
        for Roi in roi_points:

            xpoints = Roi.getPolygon().xpoints
            ypoints = Roi.getPolygon().ypoints
            print(xpoints, ypoints)

        print('Start Landmark', xpoints[0], ypoints[0])
        fixedpointX = xpoints[0]
        fixedpointY = ypoints[0]
        print('End Landmark', xpoints[1], ypoints[1])
        IJ.makeLine(xpoints[0], ypoints[0], xpoints[1], ypoints[1])
        gui = GenericDialog("Rotation Angle")
        gui.addNumericField("Choose Angle", 15, 0)
        gui.showDialog()
        if gui.wasOKed():

            rotateangle = gui.getNextNumber()
            IJ.run("Rotate...", "angle=" + str(int(float(rotateangle))))

        rm.runCommand("reset")
        overlay = imp.getOverlay()
        rm.runCommand("Add")
        roi_points = rm.getRoisAsArray()

        for Roi in roi_points:
            xpoints = Roi.getPolygon().xpoints
            ypoints = Roi.getPolygon().ypoints
            print(xpoints, ypoints)

        print('Rotated Start Landmark', xpoints[0], ypoints[0])
        print('Rotated End Landmark', xpoints[1], ypoints[1])
        slope = (ypoints[1] - ypoints[0]) / (xpoints[1] - xpoints[0] + 1.0E-20)
        intercept = fixedpointY - slope * fixedpointX
        print(fixedpointX, fixedpointY)
        print('Slope', slope, 'Intercept', intercept)
        XwY0 = -intercept / slope
        YxwY0 = slope * XwY0 + intercept

        XwYmax = (impY - intercept) / slope
        YxwYmax = slope * XwYmax + intercept

        YwX0 = intercept
        XywX0 = (YwX0 - intercept) / slope
        YwXmax = impX * slope + intercept
        XxwXmax = (YwXmax - intercept) / slope
        rm.runCommand("reset")

        if XwY0 > 0:
            lineROIA = Line(fixedpointX, fixedpointY, XwY0, YxwY0)
            lineROIB = Line(fixedpointX, fixedpointY, XwYmax, YxwYmax)
            overlay.add(lineROIA)

            overlay.add(lineROIB)

        if XwY0 < 0:
            lineROIA = Line(fixedpointX, fixedpointY, XywX0, YwX0)
            lineROIB = Line(fixedpointX, fixedpointY, XxwXmax, YwXmax)
            overlay.add(lineROIA)

            overlay.add(lineROIB)

        while cursor.hasNext():
            cursor.fwd()
            X = cursor.getDoublePosition(0)
            Y = cursor.getDoublePosition(1)
            if abs(Y - slope * X - intercept) <= 4:
                cursor.get().set(0)
            else:
                cursor.get().set(1)
        labeling = ops.labeling().cca(maskimage,
                                      StructuringElement.EIGHT_CONNECTED)

        # get the index image (each object will have a unique gray level)
        labelingIndex = labeling.getIndexImg()
        dataImg = ds.create(labelingIndex)
        location = ls.resolve(
            str(savedir) + '/' + file_name + '.' + file_type_image)
        dio.save(dataImg, location)
        imp.close()
コード例 #42
0
def getRois(mask):
    mask.setThreshold(255, 255, ImageProcessor.NO_LUT_UPDATE)
    composite = ThresholdToSelection().convert(mask)
    rois = ShapeRoi(composite).getRois()
    return rois


def getRoi(mask):
    mask.setThreshold(255, 255, ImageProcessor.NO_LUT_UPDATE)
    roi = ThresholdToSelection().convert(mask)
    return roi


imp = IJ.getImage()
cal = imp.getCalibration()
ol = Overlay()

proj_sca1 = maxProject(imp, channel_sca1)
proj_hoescht = maxProject(imp, channel_hoescht)
proj_opn = maxProject(imp, channel_opn)
proj_gfp = maxProject(imp, channel_gfp)

mask_sca1 = mask2D(proj_sca1, 1.0 / cal.pixelWidth, 6,
                   AutoThresholder.Method.Otsu, min_sca1, False,
                   False)  #surrounding lumen
mask_hoescht = mask2D(proj_hoescht, 1.5 / cal.pixelWidth, 5,
                      AutoThresholder.Method.Otsu, min_hoescht, True,
                      True)  #Hoescht
mask_opn = mask2D(proj_opn, 1.0 / cal.pixelWidth, 0,
                  AutoThresholder.Method.MaxEntropy, min_opn, False,
                  False)  #surrounding lumen fragments
コード例 #43
0
#  Modifications
#   Date      Who  Ver                       What
# ----------  --- ------  -------------------------------------------------
# 2014-11-25  JRM 1.1.00  Jython version of Create_Overlay.js

from org.python.core import codecs
codecs.setDefaultEncoding('utf-8')

from ij import IJ, ImagePlus, WindowManager
from ij.gui import Roi, TextRoi, Overlay, OvalRoi, Line, PolygonRoi
from java.awt import Color, Font

imp = IJ.openImage("http://imagej.nih.gov/ij/images/blobs.gif")

# create an overlay
ol = Overlay()
fnt = Font("SanSerif", Font.BOLD, 28)
roi = TextRoi(10, 5, "This is an overlay", fnt)
roi.setStrokeColor(Color.yellow)
roi.setFillColor(Color(0,0,0,0.5))
ol.add(roi)

roi = Roi(30,70,200,150)
roi.setStrokeColor(Color.blue)
roi.setFillColor(Color(0,0,1,0.3))
ol.add(roi)

roi = OvalRoi(60,60,140,140)
roi.setStrokeColor(Color.green)
roi.setStrokeWidth(15)
ol.add(roi)