def delete(imp, roiMan, roiTotal): # set results table rt = ResultsTable.getResultsTable() # set up analyzer analyzer = Analyzer(imp, 1, rt) totalPixels = 0 # Set the color and line options for erasing IJ.run("Colors...", "foreground=black background=black selection=magenta") if roiMan is not None: # Iterate through the ROIs for roi in xrange(roiTotal): # Select the ROI roiMan.select(roi) selectRoi = roiMan.getRoi(roi) # measure analyzer.measure() meas = rt.getRowAsString(0) newLine = meas.split(" ", 1) pixels = float(newLine[1]) totalPixels = totalPixels + pixels # Tag the ROI IJ.run(imp, "Fill", "slice") # end for loop return totalPixels else: return 0
def learn(imp): IJ.run(imp, "Line Width...", "line=10") IJ.run("Colors...", "foreground=black background=black selection=red") # Clear ROI manager roiMan = RoiManager.getInstance() if roiMan is not None: roiMan.reset() # set results table rt = ResultsTable.getResultsTable() # set up analyzer analyzer = Analyzer(imp, 1, rt) impBrightness = ProcessHSB.getBrightness(imp) IJ.run(impBrightness, "8-bit", "") IJ.run(impBrightness, "Auto Threshold", "method=Shanbhag white") IJ.run(impBrightness, "Analyze Particles...", "size=50000-Infinity circularity=0.00-1.00 show=Masks add in_situ") # Pixel running total pixelTotal = zeros('f', 4) roiTotal = roiMan.getCount() if roiMan is not None: # Iterate throught the ROIs for roi in xrange(roiTotal): roiMan.select(roi) selectRoi = roiMan.getRoi(roi) option = getOptions() # measure analyzer.measure() meas = rt.getRowAsString(0) newLine = meas.split(" ", 1) pixels = float(newLine[1]) # Tag the ROI IJ.run(imp, "Fill", "slice") pixelTotal[0] = pixelTotal[0] + (option[0] * pixels) pixelTotal[1] = pixelTotal[1] + (option[1] * pixels) pixelTotal[2] = pixelTotal[2] + (option[2] * pixels) pixelTotal[3] = pixelTotal[3] + (option[3] * pixels) return pixelTotal else: return pixelTotal
def __localwand(self, x, y, ip, seuil, method, light): self.__image.killRoi() ip.snapshot() if method == "mean" : peak=ip.getPixel(x,y) tol = (peak - self.getMean())*seuil w = Wand(ip) w.autoOutline(x, y, tol, Wand.EIGHT_CONNECTED) #print "method=", method, tol, peak elif method == "background" : radius = self.getMinF()/4 bs = BackgroundSubtracter() #rollingBallBackground(ImageProcessor ip, double radius, boolean createBackground, boolean lightBackground, boolean useParaboloid, boolean doPresmooth, boolean correctCorners) bs.rollingBallBackground(ip, radius, False, light, False, True, False) peak=ip.getPixel(x,y) tol = peak*seuil w = Wand(ip) w.autoOutline(x, y, tol, Wand.EIGHT_CONNECTED) ip.reset() #print "method=", method, tol, radius, peak else : peak=ip.getPixel(x,y) tol = peak*seuil w = Wand(ip) w.autoOutline(x, y, tol, Wand.EIGHT_CONNECTED) #print "method=", method, tol peak=ip.getPixel(x,y) temproi=PolygonRoi(w.xpoints, w.ypoints, w.npoints, PolygonRoi.POLYGON) self.__image.setRoi(temproi) #self.__image.show() #time.sleep(1) #peakip=self.__image.getProcessor() #stats=peakip.getStatistics() temprt = ResultsTable() analyser = Analyzer(self.__image, Analyzer.AREA+Analyzer.INTEGRATED_DENSITY+Analyzer.FERET, temprt) analyser.measure() #temprt.show("temprt") rtValues=temprt.getRowAsString(0).split("\t") area=float(rtValues[1]) intDen=float(rtValues[4]) feret=float(rtValues[2]) mean=intDen/area #time.sleep(2) temprt.reset() self.__image.killRoi() return [peak, area, mean, intDen, feret]
def measureROIs(imp, measOpt, thisrt, roiA, backint, doGLCM): """ Cell-wise measurment using ROI array. """ analObj = Analyzer(imp, measOpt, thisrt) for index, r in enumerate(roiA): imp.deleteRoi() imp.setRoi(r) analObj.measure() maxint = thisrt.getValue('Max', thisrt.getCounter()-1) saturation = 0 if ( maxint + backint) >= 4095: saturation = 1 if (VERBOSE): print 'cell index ', index, 'maxint=', maxint thisrt.setValue('CellIndex', thisrt.getCounter()-1, index) thisrt.setValue('Saturation', thisrt.getCounter()-1, saturation) if (doGLCM): imp.deleteRoi() measureTexture(imp, thisrt, roiA)
def identifyCoralline(imp): # Prepare Roi Manager rm = RoiManager.getInstance() if rm is not None: rm.reset() # set results table rt = ResultsTable.getResultsTable() impTemp = imp.duplicate() IJ.run(impTemp, "8-bit", "") # convert to 8-bit impCoralline = TH.whiteThreshold(impTemp) impTemp.close() IJ.run(impCoralline, "Analyze Particles...", "size=10000-Infinity circularity=0-0.50 show=Masks add in_situ") analyzer = Analyzer(imp, 1, rt) analyzer.measure() meas = rt.getRowAsString(0) newLine = meas.split(" ", 1) coralline = float(newLine[1]) return coralline
def segmentChannel_Weka(image, **kwargs): """ SegmentChannel using a Weka Classification""" ch = kwargs['channel'] if ch > len(image): raise Exception('Expecting at least ' + str(ch) + ' channels. Image has only ' + str(len(imageC)) + ' channel(s)') imp = image[ch-1].duplicate() ws = WekaSegmentation(imp) # create an instance ws.loadClassifier(kwargs['clspath']) # load classifier impProb = ws.applyClassifier(imp, 0, True) impMetaProb = extractChannel(impProb,1,1) impMetaProb.setTitle("MetaProb") # segmentation impBW = threshold(impMetaProb, kwargs['probThr']) impMetaProb.show() IJ.run("Set Measurements...", " mean center shape area redirect=MetaProb decimal=2"); # particle analysis IJ.run(impBW, "Analyze Particles...", "size=10-10000 pixel area circularity=0.00-1.00 display exclude clear stack add"); rt = Analyzer.getResultsTable() validParticles = [] roim = RoiManager.getInstance() if roim == None: raise Exception('Fiji error segmentNuclei.py: no RoiManager!') if roim.getCount() > 0: rois = roim.getRoisAsArray() else: IJ.log("# particles = 0") return impMetaProb, impBW, None, None X = rt.getColumn(rt.getColumnIndex("XM")) Y = rt.getColumn(rt.getColumnIndex("YM")) Mean = rt.getColumn(rt.getColumnIndex("Mean")) Circ = rt.getColumn(rt.getColumnIndex("Circ.")) Area = rt.getColumn(rt.getColumnIndex("Area")) print "# particles = " + str(len(Mean)) nValid = 0 for i in range(len(Mean)): valid = (Mean[i]>kwargs['minProb']) and (Circ[i]<kwargs['maxCirc']) # filter particles post detection if(valid): validParticles.append([i, X[i], Y[i], Mean[i]]) print validParticles IJ.log("# valid particles = %d " % len(validParticles)) # sort particles according to Mean validParticlesSorted = sorted(validParticles, key=itemgetter(3)) # only keep the three with the largest Mean validParticles = validParticlesSorted[-int(kwargs["nrPart"]):] #random.shuffle(validParticles) IJ.log("# valid particles = %d " % len(validParticles)) if len(validParticles) == 0: validParticles = None return impMetaProb, impBW, validParticles, rois
def __Measures(self): self.__boolmeasures=True if (self.__contour is not None) and (self.__contour.getType() not in [9,10]): self.__image.killRoi() self.__image.setRoi(self.__contour) self.__ip=self.__image.getProcessor() self.__rt= ResultsTable() analyser= Analyzer(self.__image, Analyzer.AREA+Analyzer.CENTER_OF_MASS+Analyzer.CENTROID+Analyzer.ELLIPSE+Analyzer.FERET+Analyzer.INTEGRATED_DENSITY+Analyzer.MEAN+Analyzer.KURTOSIS+Analyzer.SKEWNESS+Analyzer.MEDIAN+Analyzer.MIN_MAX+Analyzer.MODE+Analyzer.RECT+Analyzer.SHAPE_DESCRIPTORS+Analyzer.SLICE+Analyzer.STACK_POSITION+Analyzer.STD_DEV, self.__rt) analyser.measure() #self.__rt.show("myRT") else: self.__rt = ResultsTable() analyser = Analyzer(self.__image, Analyzer.AREA+Analyzer.CENTER_OF_MASS+Analyzer.CENTROID+Analyzer.ELLIPSE+Analyzer.FERET+Analyzer.INTEGRATED_DENSITY+Analyzer.MEAN+Analyzer.KURTOSIS+Analyzer.SKEWNESS+Analyzer.MEDIAN+Analyzer.MIN_MAX+Analyzer.MODE+Analyzer.RECT+Analyzer.SHAPE_DESCRIPTORS+Analyzer.SLICE+Analyzer.STACK_POSITION+Analyzer.STD_DEV, self.__rt) analyser.measure() #self.__rt.show("myRT") maxValues=self.__rt.getRowAsString(0).split("\t") heads=self.__rt.getColumnHeadings().split("\t") for val in heads: self.__rt.setValue(val, 0, Float.NaN)
overallSelectionMask = ops.map(overallSelectionMask, energyMask, invertedManualMask, andOp); else: overallSelectionMask = manualMask.copy(); newMask = ops.map(newMask, overallSelectionMask, coherencyMask, andOp); if IJ.debugMode: displays.createDisplay("oriented-mask", ImgPlus(newMask)); displays.createDisplay("overall-mask", ImgPlus(overallSelectionMask)); ### Compute area fraction of oriented regions ### # Compute area of oriented mask newMaskImp = ImageJFunctions.wrapUnsignedByte(newMask, "New mask"); newMaskImp.getProcessor().setThreshold(1.0, 1.5, False); # [0.5, 1.0] does not work due to rounding problems rt = ResultsTable(); analyzer = Analyzer(newMaskImp, Measurements.AREA | Measurements.LIMIT, rt); analyzer.measure(); # Compute area of overall selection mask energyMaskImp = ImageJFunctions.wrapUnsignedByte(overallSelectionMask, "Energy mask"); energyMaskImp.getProcessor().setThreshold(1.0, 1.5, False); # [0.5, 1.0] does not work due to rounding problems rtEnergy = ResultsTable(); analyzerEnergy = Analyzer(energyMaskImp, Measurements.AREA | Measurements.LIMIT, rtEnergy); analyzerEnergy.measure(); # Print Area% (through SciJava OUTPUT, see L5) if IJ.debugMode: print("Coherency area: "+str(rt.getValueAsDouble(rt.getColumnIndex("Area"), rt.size()-1))); print("Energy area: "+str(rtEnergy.getValueAsDouble(rtEnergy.getColumnIndex("Area"), rtEnergy.size()-1))); areaCoherency = rt.getValueAsDouble(rt.getColumnIndex("Area"), rt.size()-1);
# IJ BAR: https://github.com/tferr/Scripts#scripts # # Imports numeric values copied to the clipboard into the Results table. Useful, since # BARs that analyze tabular data can only read values from the main IJ "Results" table # # Requirements: Requires BAR_-XX.jar to be installed in the plugins folder of IJ # # NB: When copying data from withing IJ (e.g., lists from histograms or plot profiles), # Use Edit>Options>Input/Output... to specify if column headers/row numbers should be # copied to the clipboard import os, sys, tempfile from bar import Utils as barUtils from ij import IJ from ij.plugin.filter import Analyzer import ij.measure.ResultsTable as RT fd, path = tempfile.mkstemp() try: os.write(fd, barUtils.getClipboardText()) os.close(fd) rt = RT.open(path) #IOException if getClipboardText()=="" if Analyzer.resetCounter(): rt.show("Results") except: IJ.error("Could not place clipboard into Results table.") finally: os.remove(path)
nucMaskIp2 = ImagePlus("Masked Nuclei", nucMaskIp.getStack().getProcessor(1)) nucMaskIp2.setStack(nucMaskStack2) #This calculates the voronoi diagram IJ.run(nucMaskIp2, "8-bit", "") nucMaskStack2 = nucMaskIp2.getStack() IJ.run(nucMaskIp2, "Close", "stack") IJ.run(nucMaskIp2, "Invert", "stack") IJ.run(nucMaskIp2, "Voronoi", "stack") for proc in (nucMaskStack2.getProcessor(n) for n in range(1, nucMaskStack2.size() + 1)): proc.threshold(0) IJ.run(nucMaskIp2, "Invert", "stack") #This burns the boundary lines of the voronoi diagram into the nuclear mask image, completing the segmentation nucAnalyzeIp = ImageCalculator().run("AND create stack", nucMaskIp, nucMaskIp2) nucAnalyzeIp.show() #This measures the nuclei IJ.run("Set Measurements...", "area mean centroid fit shape feret's stack decimal=3") Analyzer.setRedirectImage(nucIpForMeasure) IJ.run(nucAnalyzeIp, "Analyze Particles...", "display stack") rt = ResultsTable.getResultsTable() groupString = '_'.join("%s=%s" % (key,''.join(val)) for (key,val) in zip(groupBy, outerPairs)) rt.saveAs(outputFolder +r"/nuclei_" + groupString + ".csv") IJ.run("Clear Results") rt = ResultsTable.getResultsTable() #This links nuclei to their respective cardiomyocyte (if present). The cardiomyocyte count mask image #has each pixel within a given cardiomyocyte set to its id number, so the minimum value for a nucleus roi in the cardiomyocyte #count mask image will be that cardiomyocyte's id number if the nucleus is 100% contained within a cardiomyocyte #or zero if not Analyzer.setRedirectImage(cmIp) IJ.run("Set Measurements...", "min decimal=3") IJ.run(nucAnalyzeIp, "Analyze Particles...", "display stack") rt.saveAs(outputFolder +r"/nucleilink_" + groupString + ".csv") IJ.run("Clear Results")
# FINDS THE TISSUE AREA img2 = imp.duplicate() channels2=ChannelSplitter.split(img2); redimg2=channels2[0]; IJ.run(redimg2, "8-bit", ""); IJ.setAutoThreshold(redimg2, "Default dark"); IJ.setThreshold(redimg2,20, 254); IJ.run(redimg2, "Convert to Mask", ""); redimg2.show() time.sleep(1) rt2 = ResultsTable() ta=Analyzer(redimg2,Measurements.AREA|Measurements.LIMIT,rt2) ta.measure(); double=rt2.getColumnAsDoubles(rt2.getColumnIndex("Area")) summary["Tissue-area"] =double[0]; redimg2.changes = False redimg2.close() # PARTICLE ANALYSIS ETC.. channels = ChannelSplitter.split(imp); for i, channel in enumerate(channels): IJ.setAutoThreshold(channel,"Default");
def getMeasurementInt() : """returns the int value of the measurements setting, made as a hack to translate a set of checkboxes to its corresponding number""" a = Analyzer() i = a.getMeasurements() return i
def run(): '''This is the main function run when the plugin is called.''' #print dir(IJ) ip = IJ.getProcessor() imp = IJ.getImage() # get the current Image, which is an ImagePlus object #print "imp=", type(imp), imp #print dir(imp) roi = imp.getRoi() # get the drawn ROI #print "roi=", roi, roi.getClass() # check ROI type if roi == None: gd = GenericDialog("Draw Measurement - Line") gd.addMessage("Please draw a straight-line first!") gd.showDialog() return #raise Exception( "Please draw a line ROI first!" ) if roi.getTypeAsString() != "Straight Line": gd = GenericDialog("Draw Measurement - Line") gd.addMessage("Please draw a straight-line first!") gd.showDialog() return #raise Exception( "Not a Line ROI! (type="+roi.getTypeAsString()+")" ) # Add auto calibration from text file if sets.autoupdatecal: newcal = imp.getCalibration().copy( ) # make a copy of current calibration object if MC_DEBUG: print("Assume calibration is a custom function.") # call the class' `classObj.cal( ImagePlusObject )` function to get the scale value: try: calObject = sets.autoupdatecal_name calName = calObject.name newPixelPerUnit = calObject.cal(imp) except AttributeError: raise ValueError( 'This calibration Name value is invalid, please check your Settings.py file!/n/tFor Calibration Number %i, got: `' % (CalIdx) + str(cal.names[CalIdx]) + '`. Expected a String or a Class instance with ".cal()" method, but got type ' + str(type(cal.names[CalIdx])) + ' with no ".cal()" method.') #end try newUnit = calObject.unit newAspect = calObject.aspect_ratio newPixelWidth = 1. / newPixelPerUnit newPixelHeight = newPixelWidth * newAspect # the following translated from "Microscope_Scale.java": newcal.setUnit(newUnit) newcal.pixelWidth = newPixelWidth newcal.pixelHeight = newPixelHeight imp.setGlobalCalibration(None) imp.setCalibration(newcal) # set the new calibration imp.getWindow().repaint() # refresh the image? # Added - add the measurement to the list... a = Analyzer(imp) a.measure() a.displayResults() # from ij.measure import ResultsTable # rt = ResultsTable.getResultsTable() p1 = [int(roi.x1d), int(roi.y1d)] # point 1 (x,y) p2 = [int(roi.x2d), int(roi.y2d)] # point 2 #print "DrawMeas(): Line Points: p1=", p1, " & p2=", p2 pm = midpoint(p1, p2) # get midpoint coord # set ROI params from settings: ''' Using new method - used ip.drawLine instead of roi.draw, since roi.draw didn't always apply the line thickness. Would be best to use the ROI method, in case other types of ROI's could be annotated. roi.setStrokeWidth( sets.linethickness ) roi.setStrokeColor( jColor(float(sets.linecolor[0]), float(sets.linecolor[1]), float(sets.linecolor[2]), float(sets.linecolor[3])) ) #roi.drawPixels( ip ) # draw along the ROI - only draws outline unfortunately ip.drawRoi(roi) # draw the ROI on the image ''' ip.setLineWidth(int(sets.linethickness)) ip.setColor( jColor(float(sets.linecolor[0]), float(sets.linecolor[1]), float(sets.linecolor[2]), float(sets.linecolor[3]))) #ip.draw(roi) # changed to ip.drawLine() ip.drawLine(int(roi.x1d), int(roi.y1d), int(roi.x2d), int(roi.y2d)) '''Draw text annotation''' unit = imp.getCalibration().getUnit().encode( 'utf8') # get the unit as UTF-8 (for \mu) #print "Draw_Meas(): Unit (raw) = `", unit,"`", type(unit), if unit[0] == u'\xc2': unit = unit[1:] # strip weird char at start of \mu # format of measurement text (eg. 3 decimal points): lenstr = "%0.3f" % roi.getLength() + " %s" % ( unit) # string to print as length print "DrawMeas(): Line length= %s" % lenstr #print "x,y=", p2[0], p2[1] '''determine position of text from line coords, eg "bottom right" or "top left" etc. ''' # y-coord: if p2[1] > p1[1]: posstr = 'bottom' else: posstr = 'top' # x-coord: if p2[0] > p1[0]: posstr += ' right' else: posstr += ' left' drawText(lenstr, p2[0], p2[1], position=posstr) imp.updateAndDraw() #update the image
def defaultActionSequence(self): """ Central function (DO NOT OVERWRITE) called if a button is clicked or shortcut called It trigger the following actions: - getting the current table - checking the GUI state (checkboxes, dropdown...) - running measurements if measure is selected - setting ROI attribute (if roi) - incrementing table counter - adding image directory and name to table - filling columns from GUI state using custom fillTable() - switching to next slice - displaying the annotation GUI to the front, important to catch next keyboard shortcuts """ try: imp = IJ.getImage() # get current image except: # no image: just stop the execution then return # Get current table table = getTable() table.showRowNumbers(True) # Check options, use getCheckboxes(), because the checkbox plugin have other checkboxes checkboxes = self.getCheckboxes() # Initialize Analyzer if self.runMeasure: analyzer = Analyzer(imp, table) analyzer.setMeasurement(Measurements.LABELS, False) # dont add label to table # Check if existing roi manager rm = RoiManager.getInstance() indexes = rm.getSelectedIndexes() if rm else [ ] # Check if roi selected if indexes: # Loop over selected ROI for index in indexes: # set selected features as property of rois roi = rm.getRoi(index) imp.setRoi(roi) # Run measure for the ROI if self.runMeasure: # Automatically increment counter analyzer.measure() # as selected in Set Measurements else: table.incrementCounter( ) # Automatically done if runMeasure #table.addValue("Index", table.getCounter() ) for key, value in getImageDirAndName(imp).iteritems(): table.addValue(key, value) # Add selected items (implementation-specific) self.fillTable(table) # Read comment stringField = self.getStringFields()[0] table.addValue("Comment", stringField.text) # Add roi name to the table + set its property table.addValue("Roi", roi.getName()) # Add roi name to table setRoiProperties(roi, table) # No roi selected in the Manager else: if self.runMeasure: # also automatically increment counter analyzer.measure() # as selected in Set Measurements else: table.incrementCounter() # Automatically done if runMeasure #table.addValue("Index", table.getCounter() ) for key, value in getImageDirAndName(imp).iteritems(): table.addValue(key, value) # Add selected items (implementation-specific) self.fillTable(table) # Read comment stringField = self.getStringFields()[0] table.addValue("Comment", stringField.text) # Check if an active Roi, not yet present in Manager roi = imp.getRoi() if roi is not None: roi.setPosition(imp) rm = getRoiManager() rm.addRoi(roi) # get back the roi from the manager to set properties roiBis = rm.getRoi(rm.getCount() - 1) roiName = roiBis.getName() table.addValue("Roi", roiName) # Add roi name to table setRoiProperties(roiBis, table) title = table.getTitle() if table.getTitle( ) else "Annotations" # getTitle is None for newly generated table table.show(title) # Update table #table.updateResults() # only for result table but then addValue does not work ! # Go to next slice doNext = checkboxes[-1].getState() if doNext: if self.browseMode == "stack": nextSlice(imp, self.getSelectedDimension()) elif self.browseMode == "directory": NextImageOpener().run("forward") # Bring back the focus to the button window (otherwise the table is in the front) if not IJ.getFullVersion().startswith("1.52p"): WindowManager.toFront(self) # prevent some ImageJ bug with 1.52p
def Measurements(channels, timelist, dirs, parameters): """ Takes measurements of weka selected ROIs in a generated aligned image stack. """ # Set desired measurements. an = Analyzer() an.setMeasurements(an.AREA + an.MEAN + an.MIN_MAX + an.SLICE) # Opens raw-projections as stack. test = IJ.run("Image Sequence...", "open=" + dirs["Aligned_All"] + " number=400 starting=1 increment=1 scale=400 file=.tif sort") # Calls roimanager. rm = RoiManager.getInstance() total_rois = rm.getCount() # Deletes artefact ROIs (too large or too small). imp = WindowManager.getCurrentImage() for roi in reversed(range(total_rois)): rm.select(roi) size = imp.getStatistics().area if size < int(float(parameters["cell_min"])): rm.select(roi) rm.runCommand('Delete') elif size > int(float(parameters["cell_max"])): rm.select(roi) rm.runCommand('Delete') else: rm.runCommand("Deselect") # Confirm that ROI selection is Ok (comment out for headless run). WaitForUserDialog("ROI check", "Control ROI selection, then click OK").show() # Measure each ROI for each channel. imp = WindowManager.getCurrentImage() rm.runCommand("Select All") rm.runCommand("multi-measure measure_all One row per slice") # Close. imp = WindowManager.getCurrentImage() imp.close() # Get measurement results. rt = ResultsTable.getResultsTable() Area = rt.getColumn(0) Mean = rt.getColumn(1) Slice = rt.getColumn(27) # Removes (and counts) artefact ROIs (redundant) # Area indices without outliers Area_indices = [index for (index, value) in enumerate(Area, start=0) if value > 0 and value < 9999999] # Mean without outliers from area (redundant) Filtered_mean = [Mean[index] for index in Area_indices] Filtered_slice = [Slice[index] for index in Area_indices] # Number of cell selections. Cell_number = Filtered_slice.count(1.0) rm = RoiManager.getInstance() print "Number of selected cells: ", Cell_number print "Total number of selections: ", rm.getCount() Cells = [ Filtered_mean [x : x + Cell_number] for x in xrange (0, len(Filtered_mean), Cell_number) ] Cells_indices = [ index for (index, value) in enumerate(Cells) ] time = [ x for item in timelist for x in repeat(item, Cell_number) ] time = [ time [x : x + Cell_number] for x in xrange (0, len(time), Cell_number) ] Slices = [ Filtered_slice [x : x + Cell_number] for x in xrange (0, len(Filtered_slice), Cell_number) ] # Lists IDD, IDA + IAA if 3ch. if channels == 3: IDD_list = [ Cells [index] for index in Cells_indices [0::int(channels)] ] IDA_list = [ Cells [index] for index in Cells_indices [1::int(channels)] ] IAA_list = [ Cells [index] for index in Cells_indices [2::int(channels)] ] raw_data = {"IDD" : IDD_list, "IDA" : IDA_list, "IAA" : IAA_list, "Cell_num" : Cell_number, "Slices" : Slices, "Time" : time } elif channels == 2: IDD_list = [ Cells [index] for index in Cells_indices [0::int(channels)] ] IDA_list = [ Cells [index] for index in Cells_indices [1::int(channels)] ] raw_data = {"IDD": IDD_list, "IDA" : IDA_list, "Cell_num" : Cell_number, "Slices" : Slices, "Time" : time } return raw_data
def processImages(cfg, wellName, wellPath, images): stats = [[[dict() for t in range(cfg.getValue(ELMConfig.numT))] for z in range(cfg.getValue(ELMConfig.numZ))] for c in range(cfg.getValue(ELMConfig.numChannels))] times = {} for c in range(0, cfg.getValue(ELMConfig.numChannels)): chanStr = 'ch%(channel)02d' % {"channel" : c}; chanName = cfg.getValue(ELMConfig.chanLabel)[c] # Set some config based upon channel if (cfg.getValue(ELMConfig.chanLabel)[c] in cfg.getValue(ELMConfig.chansToSkip)): continue if (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.BRIGHTFIELD): minCircularity = 0.001 # We want to identify one big cell ball, so ignore small less circular objects if cfg.params[ELMConfig.imgType] == "png": minSize = 5; else: minSize = 500 elif (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.BLUE) \ or (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.RED) \ or (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.GREEN): # minCircularity = 0.001 minSize = 5 elif (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.YELLOW): minCircularity = 0.001 minSize = 5 # Process images in Z stack for z in range(0, cfg.getValue(ELMConfig.numZ)): zStr = cfg.getZStr(z); for t in range(0, cfg.getValue(ELMConfig.numT)): tStr = cfg.getTStr(t) if (cfg.getValue(ELMConfig.imgType) == "png"): # Brightfield uses the whole iamge if (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.BRIGHTFIELD): currIP = IJ.openImage(images[c][z][t][0]) else: # otherwise, we'll plit off channels chanIdx = 2 if (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.RED): chanIdx = 0 elif (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.GREEN): chanIdx = 1; img = IJ.openImage(images[c][z][t][0]) imgChanns = ChannelSplitter.split(img); img.close() currIP = imgChanns[chanIdx]; else: currIP = IJ.openImage(images[c][z][t][0]) resultsImage = currIP.duplicate() dbgOutDesc = wellName + "_" + zStr + "_" + chanStr + "_" + tStr if (cfg.getValue(ELMConfig.numT) > 1): outputPath = os.path.join(wellPath, "images") if not os.path.exists(outputPath): os.makedirs(outputPath) else: outputPath = wellPath if cfg.getValue(ELMConfig.debugOutput): WindowManager.setTempCurrentImage(currIP) IJ.saveAs('png', os.path.join(outputPath, "Orig_" + dbgOutDesc + ".png")) # We need to get to a grayscale image, which will be done differently for different channels startTime = time.time() currIP = ELMImageUtils.getThresholdedMask(currIP, c, z, t, chanName, cfg, outputPath, dbgOutDesc) endTime = time.time() if not 'grayscale' in times: times['grayscale'] = [] times['grayscale'].append(endTime-startTime) if (not currIP): resultsImage.close() stats[c][z][t][ELMConfig.UM_AREA] = [] continue startTime = time.time() # Create a table to store the results table = ResultsTable() # Create a hidden ROI manager, to store a ROI for each blob or cell #roim = RoiManager(True) # Create a ParticleAnalyzer measurements = Measurements.AREA + Measurements.MEAN + Measurements.STD_DEV + Measurements.MIN_MAX + Measurements.CENTROID + Measurements.RECT + Measurements.ELLIPSE paFlags = ParticleAnalyzer.IN_SITU_SHOW | ParticleAnalyzer.SHOW_MASKS | ParticleAnalyzer.CLEAR_WORKSHEET pa = ParticleAnalyzer(paFlags, measurements, table, minSize, Double.POSITIVE_INFINITY, minCircularity, 1.0) #pa.setHideOutputImage(True) # The Result image is copied when CurrIP can still have calibration from loading # We want the output to be in terms of pixels, for ease of use, so adjust calibration resultsImage.setCalibration(currIP.getCalibration()) Analyzer.setRedirectImage(resultsImage) if not pa.analyze(currIP): print "There was a problem in analyzing", currIP endTime = time.time() if not 'pa' in times: times['pa'] = [] times['pa'].append(endTime-startTime) #for i in range(0, roim.getCount()) : # r = roim.getRoi(i); # r.setColor(Color.red) # r.setStrokeWidth(2) # The measured areas are listed in the first column of the results table, as a float array: newAreas = [] maxArea = 0 if table.getColumn(ResultsTable.AREA): for pixArea in table.getColumn(ResultsTable.AREA): a = pixArea * cfg.getValue(ELMConfig.pixelHeight) * cfg.getValue(ELMConfig.pixelWidth) newAreas.append(a) if (a > maxArea): maxArea = a # Threshold areas idxToRemove = set() if cfg.hasValue(ELMConfig.areaMaxPercentThreshold): areaPercentThresh = cfg.getValue(ELMConfig.areaMaxPercentThreshold) for i in range(0,len(newAreas)): if newAreas[i] < (areaPercentThresh * maxArea): idxToRemove.add(i) if cfg.hasValue(ELMConfig.areaAbsoluteThreshold): areaAbsoluteThresh = cfg.getValue(ELMConfig.areaAbsoluteThreshold) for i in range(0,len(newAreas)): if newAreas[i] < areaAbsoluteThresh: idxToRemove.add(i) for i in sorted(idxToRemove, reverse=True): del newAreas[i] stats[c][z][t][ELMConfig.UM_AREA] = newAreas centroidX = [] centroidY = [] roiX = [] roiY = [] roiWidth = [] roiHeight = [] rArea = [] # Store all of the other data for col in range(0,table.getLastColumn()): newData = table.getColumn(col) if not newData is None: if col == ResultsTable.X_CENTROID: for idx in idxToRemove: centroidX.append(newData[idx]) if col == ResultsTable.Y_CENTROID: for idx in idxToRemove: centroidY.append(newData[idx]) if col == ResultsTable.ROI_X: for idx in idxToRemove: roiX.append(int(newData[idx])) if col == ResultsTable.ROI_Y: for idx in idxToRemove: roiY.append(int(newData[idx])) if col == ResultsTable.ROI_WIDTH: for idx in idxToRemove: roiWidth.append(int(newData[idx])) if col == ResultsTable.ROI_HEIGHT: for idx in idxToRemove: roiHeight.append(int(newData[idx])) if col == ResultsTable.AREA: for idx in idxToRemove: rArea.append(newData[idx]) for i in sorted(idxToRemove, reverse=True): del newData[i] stats[c][z][t][table.getColumnHeading(col)] = newData IJ.saveAs('png', os.path.join(outputPath, "PreFiltered_Segmentation_" + dbgOutDesc + "_particles.png")) # Remove the segmentation masks for the objects removed currProcessor = currIP.getProcessor() ff = FloodFiller(currProcessor) currIP.getProcessor().setValue(0) calib = resultsImage.getCalibration() sortedAreaIndices = [i[0] for i in sorted(enumerate(rArea), key=lambda x:x[1])] for idx in range(0, len(sortedAreaIndices)): i = sortedAreaIndices[idx] centX = int(calib.getRawX(centroidX[i])) centY = int(calib.getRawY(centroidY[i])) # Since the centroid isn't guaranteed to be part of the blob # search around until an active pixel is found found = False halfWidth = min([roiHeight[i], roiWidth[i]]) for offset in range(0,halfWidth): if found: break for x in range(centX-offset,centX+offset+1): if found: break for y in range(centY-offset,centY+offset+1): if not currProcessor.getPixel(x,y) == 0x0: found = True finalX = x finalY = y break if not found: print "\t\tZ = " + str(z) + ", T = " + str(t) + ", chan " + chanName + ": ERROR: Never found active pixel for filtered blob, centroid: " + str(centX) + ", " + str(centY) else: currProcessor.setRoi(roiX[i], roiY[i], roiWidth[i], roiHeight[i]) ff.fill8(finalX,finalY) #IJ.saveAs('png', os.path.join(outputPath, "Segmentation_" + dbgOutDesc + "_" + str(idx) + ".png")) #outImg = pa.getOutputImage() IJ.saveAs('png', os.path.join(outputPath, "Segmentation_" + dbgOutDesc + "_particles.png")) if cfg.hasValue(ELMConfig.createSegMask) and cfg.getValue(ELMConfig.createSegMask) == True: # Create segmentation mask segMask = currIP.duplicate() segMask.setTitle("SegMask_" + dbgOutDesc) # Iterate by smallest area first # We are more likely to correctly label small areas if len(newAreas) > 0: segProcessor = segMask.getProcessor() if (len(newAreas) > 255): segProcessor = segProcessor.convertToShort(True) segMask.setProcessor(segProcessor) ff = FloodFiller(segProcessor) sortedAreaIndices = [i[0] for i in sorted(enumerate(stats[c][z][t]['Area']), key=lambda x:x[1])] for idx in range(0, len(sortedAreaIndices)): row = sortedAreaIndices[idx] centX = int(stats[c][z][t]['X'][row]) centY = int(stats[c][z][t]['Y'][row]) roiX = int(stats[c][z][t]['BX'][row]) roiY = int(stats[c][z][t]['BY'][row]) roiWidth = int(stats[c][z][t]['Width'][row]) roiHeight = int(stats[c][z][t]['Height'][row]) area = stats[c][z][t]['Area'][row] halfRoiHeight = roiHeight/2 + 1 halfRoiWidth = roiWidth/2 + 1 # Since the centroid isn't guaranteed to be part of the blob # search around until an active pixel is found found = False for xOffset in range(0,halfRoiWidth): if found: break for yOffset in range(0, halfRoiHeight): if found: break for x in range(centX-xOffset,centX+xOffset+1): if found: break for y in range(centY-yOffset,centY+yOffset+1): # original image and this image for masked pixel # By checking original image, we avoid confusion with a label of 255 if segProcessor.getPixel(x,y) == 255 and currProcessor.getPixel(x,y) == 255: found = True finalX = x finalY = y break if not found: print "\t\tZ = " + str(z) + ", T = " + str(t) + ", chan " + chanName + ": ERROR: Never found active pixel for seg mask, centroid, roi, area (px): " \ + str(centX) + ", " + str(centY) + ", " + str(roiX) + ", " + str(roiY) + ", " + str(roiWidth) + ", " + str(roiHeight) + ", " + str(area) else: segProcessor.setRoi(roiX, roiY, roiWidth, roiHeight) segProcessor.setColor(row + 1) ff.fill8(finalX,finalY) lut = LutLoader.openLut(cfg.getValue(ELMConfig.lutPath)) segMask.setLut(lut) WindowManager.setTempCurrentImage(segMask); IJ.saveAs('png', os.path.join(outputPath, "SegMask_" + dbgOutDesc + "_particles.png")) startTime = time.time() width = currIP.getWidth(); height = currIP.getHeight(); overlayImage = resultsImage.duplicate() overlayImage.setTitle("Overlay_" + dbgOutDesc + "_particles") if not overlayImage.getType() == ImagePlus.COLOR_RGB: imgConvert = ImageConverter(overlayImage) imgConvert.convertToRGB() overlayProcessor = overlayImage.getProcessor() currProcessor = currIP.getProcessor() if (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.BRIGHTFIELD): maskColor = 0x0000ff00 elif (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.YELLOW): maskColor = 0x000000ff elif (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.RED): maskColor = 0x0000ff00 elif (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.GREEN): maskColor = 0x00ff0000 elif (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.BLUE): maskColor = 0x00ffff00 for x in range(0, width): for y in range(0,height): currPix = currProcessor.getPixel(x,y); if not currPix == 0x00000000: overlayProcessor.putPixel(x, y, maskColor) endTime = time.time() if not 'overlay' in times: times['overlay'] = [] times['overlay'].append(endTime-startTime) WindowManager.setTempCurrentImage(overlayImage); IJ.saveAs('png', os.path.join(outputPath, "Overlay_" + dbgOutDesc + "_particles.png")) #currIP.hide() currIP.close() resultsImage.close() timesAvg = {} for key in times: timeList = times[key] timesAvg[key] = sum(timeList) / len(timeList); print("processImage times " + str(timesAvg)) return stats
def main(): #------------------------------ # MAIN #------------------------------ imp_name = imp.getTitle() imp_name, ext = os.path.splitext(imp_name) models, channel_names, prob_threshs, nms_threshs = [], [], [], [] if stardist_membrane_enabled: models.append(stardist_membrane) channel_names.append('Membrane') prob_threshs.append(prob_thresh_membrane) nms_threshs.append(nms_thresh_membrane) if stardist_dna_enabled: models.append(stardist_dna) channel_names.append('DNA') prob_threshs.append(prob_thresh_dna) nms_threshs.append(nms_thresh_dna) if len(models) == 0: return error("no stardist model enabled") if tracking_channel not in channel_names: return error("channel %s cannot be tracked, must be one of %s" % (tracking_channel, channel_names)) n_channels = imp.getNChannels() n_frames = imp.getNFrames() is_hyperstack = n_channels > 1 if n_frames < 2: return error("input must be a timelapse") if n_channels != len(models): return error( "input image has %d channels, but %d stardist model(s) enabled" % (n_channels, len(models))) export_calibration(imp, save_path(save_dir, imp_name, 'calibration.json')) channel_imps = ChannelSplitter.split(imp) args = zip(channel_names, channel_imps, models, prob_threshs, nms_threshs) if tracking_channel == 'Membrane': args = reversed(args) # tracking_channel must come last params = {} params['modelChoice'] = "Model (.zip) from File" params['outputType'] = "ROI Manager" # params['roiPosition'] = "Automatic" # doesn't work because single channels are fed to StarDist, but result may be displayed on hyperstack params['roiPosition'] = "Hyperstack" if n_channels > 1 else "Stack" print "\n===============================\n" for channel_name, channel, model, prob_thresh, nms_thresh in args: params['input'] = channel params['modelFile'] = model.getAbsolutePath() params['probThresh'] = prob_thresh params['nmsThresh'] = nms_thresh # print 'StarDist', channel_name, ':', params, '\n' command.run(StarDist2D, False, params).get() rename_rois(rm, is_hyperstack) rm.runCommand( "Save", save_path(save_dir, imp_name, 'rois_%s.zip' % channel_name.lower())) export_rois( rm, is_hyperstack, save_path(save_dir, imp_name, 'rois_%s.json' % channel_name.lower())) assert channel_name == tracking_channel # backup global user-chosen measurements measurements = Analyzer.getMeasurements() # set needed measurements Analyzer.setMeasurements(Measurements.AREA + Measurements.CENTER_OF_MASS + Measurements.STACK_POSITION) # create measurements table rm.runCommand(imp, "Measure") # restore global user-chosen measurements Analyzer.setMeasurements(measurements) # close/hide measurements table results_window = ResultsTable.getResultsWindow() results_window.close(False) # results_window.setVisible(False) # Remove overlay if any. imp.setOverlay(None) # Get results table. results_table = ResultsTable.getResultsTable() # print results_table # Create TrackMate instance. trackmate = create_trackmate(imp, results_table, frame_link_dist, gap_close_dist, seg_split_dist) #----------------------- # Process. #----------------------- ok = process(trackmate) if not ok: sys.exit(str(trackmate.getErrorMessage())) #----------------------- # Display results. #----------------------- # TODO: close trackmate gui? # Create the GUI and let it control display of results. display_results_in_GUI(trackmate, imp) color_and_export_rois_by_track( trackmate, rm, save_path(save_dir, imp_name, 'tracks_%s.csv' % tracking_channel.lower()))
ws = WekaSegmentation(imp) # create an instance ws.loadClassifier(classifierPath) # load classifier impProb = ws.applyClassifier(imp, 0, True) #impProb.show() impMetaProb = extractChannel(impProb,1,1) impMetaProb.setTitle("MetaProb") # segmentation impBW = threshold(impMetaProb,0.6) impMetaProb.show() IJ.run("Set Measurements...", " mean center shape area redirect=MetaProb decimal=2"); impBW.show() # particle analysis IJ.run("Analyze Particles...", "size=10-10000 pixel area circularity=0.00-1.00 display exclude clear stack add"); rt = Analyzer.getResultsTable() validParticles = [] if(rt.getColumnIndex("XM")==-1): print "# particles = 0" else: X = rt.getColumn(rt.getColumnIndex("XM")) Y = rt.getColumn(rt.getColumnIndex("YM")) Mean = rt.getColumn(rt.getColumnIndex("Mean")) Circ = rt.getColumn(rt.getColumnIndex("Circ.")) Area = rt.getColumn(rt.getColumnIndex("Area")) print "# particles = " + str(len(Mean)) for i in range(len(Mean)): valid = (Mean[i]>0.8) and (Circ[i]<0.8) # filter particles post detection if(valid): validParticles.append(i)
def setMeasurementInt(i) : """sets the measurements setting to the int value i, made as a hack to translate an number to its corresponding checkboxes""" a = Analyzer() a.setMeasurements(i)
show = sys.argv[ -8 ] display_results = jython_utils.asbool( sys.argv[ -7 ] ) all_results = jython_utils.asbool( sys.argv[ -6 ] ) exclude_edges = jython_utils.asbool( sys.argv[ -5 ] ) include_holes = jython_utils.asbool( sys.argv[ -4 ] ) tmp_output_path = sys.argv[ -3 ] output_datatype = sys.argv[ -2 ] results_path = sys.argv[ -1 ] # Open the input image file. input_image_plus = IJ.openImage( input ) # Create a copy of the image. input_image_plus_copy = input_image_plus.duplicate() image_processor_copy = input_image_plus_copy.getProcessor() analyzer = Analyzer( input_image_plus_copy ) try: # Set binary options. options = jython_utils.get_binary_options( black_background=black_background ) IJ.run( input_image_plus_copy, "Options...", options ) # Convert image to binary if necessary. if not image_processor_copy.isBinary(): # Convert the image to binary grayscale. IJ.run( input_image_plus_copy, "Make Binary", "" ) # Set the options. options = [ 'size=%s' % size ] circularity_str = '%.3f-%.3f' % ( circularity_min, circularity_max ) options.append( 'circularity=%s' % circularity_str )
# IJ BAR: https://github.com/tferr/Scripts#scripts # # Imports numeric values copied to the clipboard into the Results table. It is # now deprecated. It was of utility prior to BAR v1.1.7, when BARs that analyzed # tabular data could only read values from the main IJ "Results" table. It is # included here as a programming example. # # Requirements: Requires BAR_-XX.jar to be installed in the plugins folder of IJ # # NB: When copying data from withing IJ (e.g., lists from histograms or plot profiles), # Use Edit>Options>Input/Output... to specify if column headers/row numbers should be # copied to the clipboard import os, tempfile from bar import Utils as barUtils from ij import IJ from ij.plugin.filter import Analyzer import ij.measure.ResultsTable as RT fd, path = tempfile.mkstemp() try: os.write(fd, barUtils.getClipboardText()) os.close(fd) rt = RT.open(path) #IOException if getClipboardText()=="" if Analyzer.resetCounter(): rt.show("Results") except: IJ.showMessage("Could not place clipboard into Results table.") finally: os.remove(path)
gd.showDialog() if (gd.wasCanceled()): quit() index1 = gd.getNextChoiceIndex() index2 = gd.getNextChoiceIndex() image1 = WindowManager.getImage(wList[index1]) image2 = WindowManager.getImage(wList[index2]) IJ.selectWindow(wList[index1]) rt = ResultsTable.getResultsTable() rt.reset() gd = WaitForUserDialog("Pick region with only bleedthrough") gd.show() al1 = Analyzer(image1) theSlice = image1.getSlice() al1.measure() al1.displayResults() theRoi = image1.getRoi() al2 = Analyzer(image2) image2.setSlice(theSlice) image2.setRoi(theRoi) al2.measure() al2.displayResults() gd = WaitForUserDialog("Pick autofluorescent tissue region") gd.show() al1.measure() al1.displayResults() theRoi = image1.getRoi() image2.setRoi(theRoi)
def __fmeasures(self) : self.__Cutoff = float(self.__display4.text) nslices = self.__impRes.getImageStackSize() rt = ResultsTable() rt.show("RT-"+self.__name) if self.__maxfinder : twpoints = TextWindow("points-"+self.__name, "index\tlabel\tname\tx\ty\taxis\tcellw\tcellh", "", 200, 450) twlabels = TextWindow("labels-"+self.__name, "index\tlabel\tname\tnpoints", "", 200, 450) isres = self.__impRes.getImageStack() for index in range(1, nslices+1): pc = (index*100)/nslices IJ.showStatus("Je suis a "+str(pc)+"%") self.__impRes.setSlice(index) self.__impRes.killRoi() roi = self.__listrois[index-1] self.__impRes.setRoi(roi) analyser= Analyzer(self.__impRes, Analyzer.LABELS+Analyzer.CENTER_OF_MASS+Analyzer.CENTROID+Analyzer.INTEGRATED_DENSITY+Analyzer.MEAN+Analyzer.KURTOSIS+Analyzer.SKEWNESS+Analyzer.MIN_MAX+Analyzer.SLICE+Analyzer.STACK_POSITION+Analyzer.STD_DEV, rt) analyser.measure() rt.show("RT-"+self.__name) rect=roi.getBounds() ip = self.__impRes.getProcessor() xCoord = [] yCoord = [] currentPixel = [] m00 = 0.00 m10 = 0.00 m01 = 0.00 mc20 = 0.00 mc02 = 0.00 mc11 = 0.00 mc30 = 0.00 mc03 = 0.00 mc21 = 0.00 mc12 = 0.00 mc40 = 0.00 mc04 = 0.00 mc31 = 0.00 mc13 = 0.00 mm20 = 0.00 mm02 = 0.00 mm11 = 0.00 mm30 = 0.00 mm03 = 0.00 mm21 = 0.00 mm12 = 0.00 mm40 = 0.00 mm04 = 0.00 mm31 = 0.00 mm13 = 0.00 #for y in range(rect.y, rect.y+rect.height, 1) : # for x in range(rect.x, rect.x+rect.width, 1) : # xCoord.append(x+0.5) # yCoord.append(y+0.5) # #pixel=ip.getf(x,y)-self.__Cutoff # pixel = ip.getPixelValue(x,y)-self.__Cutoff # if pixel < 0 : pixel = 0 # currentPixel.append(pixel) # m00 += currentPixel[-1] # m10 += currentPixel[-1]*xCoord[-1] # m01 += currentPixel[-1]*yCoord[-1] #xm = m10/(m00+0.00000001) #ym = m01/(m00+0.00000001) #xc = rect.width/2.00 #yc = rect.height/2.00 #for i in range(rect.width*rect.height) : # xcrel = xCoord[i]-xc # ycrel = yCoord[i]-yc # #mc20 += currentPixel[i]*(xCoord[i]-xc)*(xCoord[i]-xc) # #mc02 += currentPixel[i]*(yCoord[i]-yc)*(yCoord[i]-yc) # #mc11 += currentPixel[i]*(xCoord[i]-xc)*(yCoord[i]-yc) # # # #mc30 += currentPixel[i]*(xCoord[i]-xc)*(xCoord[i]-xc)*(xCoord[i]-xc) # #mc03 += currentPixel[i]*(yCoord[i]-yc)*(yCoord[i]-yc)*(yCoord[i]-yc) # #mc21 += currentPixel[i]*(xCoord[i]-xc)*(xCoord[i]-xc)*(yCoord[i]-yc) # #mc12 += currentPixel[i]*(xCoord[i]-xc)*(yCoord[i]-yc)*(yCoord[i]-yc) # # # #mc40 += currentPixel[i]*(xCoord[i]-xc)*(xCoord[i]-xc)*(xCoord[i]-xc)*(xCoord[i]-xc) # #mc04 += currentPixel[i]*(yCoord[i]-yc)*(yCoord[i]-yc)*(yCoord[i]-yc)*(yCoord[i]-yc) # #mc31 += currentPixel[i]*(xCoord[i]-xc)*(xCoord[i]-xc)*(xCoord[i]-xc)*(yCoord[i]-yc) # #mc13 += currentPixel[i]*(xCoord[i]-xc)*(yCoord[i]-yc)*(yCoord[i]-yc)*(yCoord[i]-yc) # mc20 += currentPixel[i]*xcrel*xcrel # mc02 += currentPixel[i]*ycrel*ycrel # mc11 += currentPixel[i]*xcrel*ycrel # mc30 += currentPixel[i]*xcrel*xcrel*xcrel # mc03 += currentPixel[i]*ycrel*ycrel*ycrel # mc21 += currentPixel[i]*xcrel*xcrel*ycrel # mc12 += currentPixel[i]*xcrel*ycrel*ycrel # mc40 += currentPixel[i]*xcrel*xcrel*xcrel*xcrel # mc04 += currentPixel[i]*ycrel*ycrel*ycrel*ycrel # mc31 += currentPixel[i]*xcrel*xcrel*xcrel*ycrel # mc13 += currentPixel[i]*xcrel*ycrel*ycrel*ycrel #for i in range(rect.width*rect.height) : # mm20 += currentPixel[i]*(xCoord[i]-xm)*(xCoord[i]-xm) # mm02 += currentPixel[i]*(yCoord[i]-ym)*(yCoord[i]-ym) # mm11 += currentPixel[i]*(xCoord[i]-xm)*(yCoord[i]-ym) # mm30 += currentPixel[i]*(xCoord[i]-xm)*(xCoord[i]-xm)*(xCoord[i]-xm) # mm03 += currentPixel[i]*(yCoord[i]-ym)*(yCoord[i]-ym)*(yCoord[i]-ym) # mm21 += currentPixel[i]*(xCoord[i]-xm)*(xCoord[i]-xm)*(yCoord[i]-ym) # mm12 += currentPixel[i]*(xCoord[i]-xm)*(yCoord[i]-ym)*(yCoord[i]-ym) # mm40 += currentPixel[i]*(xCoord[i]-xm)*(xCoord[i]-xm)*(xCoord[i]-xm)*(xCoord[i]-xm) # mm04 += currentPixel[i]*(yCoord[i]-ym)*(yCoord[i]-ym)*(yCoord[i]-ym)*(yCoord[i]-ym) # mm31 += currentPixel[i]*(xCoord[i]-xm)*(xCoord[i]-xm)*(xCoord[i]-xm)*(yCoord[i]-ym) # mm13 += currentPixel[i]*(xCoord[i]-xm)*(yCoord[i]-ym)*(yCoord[i]-ym)*(yCoord[i]-ym) #xxcVar = mc20/m00 #yycVar = mc02/m00 #xycVar = mc11/m00 #xcSkew = mc30/(m00 * math.pow(xxcVar,(3.0/2.0))) #ycSkew = mc03/(m00 * math.pow(yycVar,(3.0/2.0))) #xcKurt = mc40 / (m00 * math.pow(xxcVar,2.0)) - 3.0 #ycKurt = mc04 / (m00 * math.pow(yycVar,2.0)) - 3.0 #ecc = (math.pow((mc20-mc02),2.0)+(4.0*mc11*mc11))/m00 #xxmVar = mm20/m00 #yymVar = mm02/m00 #xymVar = mm11/m00 #xmSkew = mm30/(m00 * math.pow(xxmVar,(3.0/2.0))) #ymSkew = mm03/(m00 * math.pow(yymVar,(3.0/2.0))) #xmKurt = mm40 / (m00 * math.pow(xxmVar,2.0)) - 3.0 #ymKurt = mm04 / (m00 * math.pow(yymVar,2.0)) - 3.0 #ecm = (math.pow((mm20-mm02),2.0)+(4.0*mm11*mm11))/m00 #rt.addValue("xxcVar", xxcVar) #rt.addValue("yycVar", yycVar) #rt.addValue("xycVar", xycVar) #rt.addValue("xcSkew", xcSkew) #rt.addValue("ycSkew", ycSkew) #rt.addValue("xcKurt", xcKurt) #rt.addValue("ycKurt", ycKurt) #rt.addValue("Ecc", ecc) #rt.addValue("xxmVar", xxmVar) #rt.addValue("yymVar", yymVar) #rt.addValue("xymVar", xymVar) #rt.addValue("xmSkew", xmSkew) #rt.addValue("ymSkew", ymSkew) #rt.addValue("xmKurt", xmKurt) #rt.addValue("ymKurt", ymKurt) #rt.addValue("Ecm", ecm) rt.addValue("roiw", rect.width) rt.addValue("roih", rect.height) rt.addValue("cellw", self.__ipw[index-1]) rt.addValue("cellh", self.__iph[index-1]) self.__impRes.killRoi() xCoord[:] = [] yCoord[:] = [] currentPixel[:] = [] points = [] points[:] = [] npointsmax = 0 #lab = self.__labels[index-1] nameroi = self.__dictCells[index][0] lab = self.__dictCells[index][1] if self.__maxfinder : self.__impMax.setSlice(index) ipmax = self.__impMax.getProcessor() for y in range(ipmax.getHeight()) : for x in range(ipmax.getWidth()) : if ipmax.getPixelValue(x,y) > 0 : twpoints.append(str(index)+"\t"+lab+"\t"+nameroi+"\t"+str(x)+"\t"+str(y)+"\t"+str(self.__cellsrois[index-1][0].getLength())+"\t"+str(self.__ipw[index-1])+"\t"+str(self.__iph[index-1])) npointsmax+=1 rt.addValue("npoints", npointsmax) twlabels.append(str(index)+"\t"+lab+"\t"+nameroi+"\t"+str(npointsmax)) rt.show("RT-"+self.__name) rt.show("RT-"+self.__name)
show = sys.argv[-8] display_results = sys.argv[-7] == "yes" all_results = sys.argv[-6] == "yes" exclude_edges = sys.argv[-5] == "yes" include_holes = sys.argv[-4] == "yes" output_filename = sys.argv[-3] output_datatype = sys.argv[-2] results_path = sys.argv[-1] # Open the input image file. input_image_plus = IJ.openImage(input_file) # Create a copy of the image. input_image_plus_copy = input_image_plus.duplicate() image_processor_copy = input_image_plus_copy.getProcessor() analyzer = Analyzer(input_image_plus_copy) # Set binary options. options_list = OPTIONS if black_background: options_list.append("black") options = " ".join(options_list) IJ.run(input_image_plus_copy, "Options...", options) if not image_processor_copy.isBinary(): # Convert the image to binary grayscale. IJ.run(input_image_plus_copy, "Make Binary", "") # Set the options. options = ['size=%s' % size] circularity_str = '%.3f-%.3f' % (circularity_min, circularity_max)
On my version of ImageJ (1.52n99) 2019-06-15 setting res.showRowNumbers() as True or False made no difference """ from ij.measure import ResultsTable from ij import IJ from ij.plugin.filter import Analyzer import jmFijiGen as jmg # start cean IJ.run("Close All") jmg.close_open_non_image_window("Results") jmg.close_open_non_image_window("ROI Manager") # open our image imp = IJ.openImage("http://imagej.nih.gov/ij/images/blobs.gif") Analyzer.setOption("BlackBackground", True) imp.show() IJ.run("Convert to Mask") imp.show() IJ.run("Set Measurements...", "area perimeter shape display redirect=None decimal=3") IJ.run("Analyze Particles...", "size=20-Infinity circularity=0.2-1.00 display exclude clear add") # Note that this showed the result numbers independent of T/F below res = ResultsTable.getResultsTable() res.showRowNumbers(True) res.updateResults() print("ImageJ version " + IJ.getFullVersion())
impSub.show() IJ.selectWindow("Result") IJ.run("Close") IJ.selectWindow("Sub") imp=WM.getCurrentImage() imp.setTitle(strName+"-acf") imp.show() centX = ip.width/2 centY = ip.height/2 top = centX-halfWidth left = centY-halfWidth IJ.makeRectangle(top,left,2*halfWidth,2*halfWidth) IJ.run("Crop") IJ.setThreshold(0.65, 1.00) Analyzer.setOption("BlackBackground", False) if bMakeBinary: IJ.run("Make Binary") IJ.run("Convert to Mask") IJ.run("Set Measurements...", "area centroid redirect=None decimal=3") IJ.run("Analyze Particles...", "display exclude clear include") rt = ResultsTable.getResultsTable() nMeas = rt.getCounter() print(nMeas) cntX = rt.getColumn(ResultsTable.X_CENTROID) cntY = rt.getColumn(ResultsTable.Y_CENTROID) cntA = rt.getColumn(ResultsTable.AREA) # find the center - will be closest to half width fHw = float(halfWidth) minDelta = 1000000. X0 = 0.
from ij import IJ from ij.gui import OvalRoi from ij.plugin.frame import RoiManager from ij.plugin.filter import Analyzer from ij.measure import Measurements, ResultsTable imp = IJ.getImage() rm = RoiManager() # instantiate manager # throws exception if it doesn't exist #rm = RoiManager.getInstance() # if manager exists bright_roi = OvalRoi(118,94,12,12); # define and add ROI imp.setRoi(bright_roi) # make active on image rm.addRoi(bright_roi) # add #rm.select(0) # select the ROI dark_roi = OvalRoi(138,144,12,12) imp.setRoi(dark_roi) # make active on image rm.addRoi(dark_roi) # add rm.runCommand(imp,"Measure") # this will create a new results table rm.runCommand(imp,"Show All") # show all ROI rt = Analyzer.getResultsTable() bright_mean = rt.getValueAsDouble(rt.getColumnIndex("Max"),0) dark_mean = rt.getValueAsDouble(rt.getColumnIndex("Mean"),1) print "Bright :" + str(bright_mean) + " Dark: " + str(dark_mean) + "the contrast value is :" + str(bright_mean/dark_mean) #access table by col and row