コード例 #1
0
def measure_rm(img_path, roi_path):
    imp = IJ.openImage(img_path)
    img_dir = imp.getOriginalFileInfo().directory
    img_file = imp.getOriginalFileInfo().fileName
    ip = imp.getProcessor()
    cal = Calibration(imp)

    rm = RoiManager()
    rm = RoiManager.getInstance()

    rm.runCommand("Open", roi_path)
    roi_array = rm.getRoisAsArray()

    moptions = Measurements.MEAN | Measurements.AREA

    for roi in roi_array:

        roi_name = roi.getName()
        ip.setRoi(roi)
        stat = ImageStatistics.getStatistics(ip, moptions, cal)

        IJ.log(img_dir + "\t" + img_file + "\t" + roi_name + "\t" +
               str(stat.pixelCount) + "\t" +
               str(stat.pixelCount * stat.umean) + "\t" + str(stat.umean))
    rm.runCommand("delete")
コード例 #2
0
def measureTumor(original, locations):
	'''Returns the area from the original image with the 
	highest kurtosis which generally corresponds to the most
	in focus image. Also saves an image corresponding to a mask
	of the measurement.'''
	# Prevent ROI manager from appearing
	roiM = RoiManager(True)
	ParticleAnalyzer.setRoiManager(roiM)
	# Locate particles above a minimum size and with a desired circularity
	IJ.run(locations, "Analyze Particles...", "size=" + str(minimumCancerArea) +"-" + str(maxCancerArea) +" circularity=" + str(circularityCutoff) + "-1.00 show=Nothing exclude add stack");
	# Choose ROI with the highest kurtosis
	maxKurtosis = None
	area = None
	selectedROI = None
	for roi in roiM.getRoisAsArray():
		original.setRoi(roi)
		stats = original.getStatistics(Measurements.KURTOSIS, Measurements.AREA)
		currentKurtosis = stats.kurtosis
		if currentKurtosis > maxKurtosis:
			maxKurtosis = stats.kurtosis
			area = stats.area
			selectedROI = roi
	original.killRoi() # Remove the remaining ROI
	roiM.runCommand("Reset")
	return (area, selectedROI)
コード例 #3
0
ファイル: RangeRois.py プロジェクト: leec13/MorphoBactDev
		def resetpressed(event):
			self.__ranges.clear()
			self.__image=IJ.getImage()
			rm = RoiManager.getInstance()
			if (rm==None): rm = RoiManager()
			rm.runCommand("reset")
			self.__image.killRoi()
			IJ.setAutoThreshold(self.__image, "MaxEntropy")
			rt=ResultsTable()
			pa=ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER+ParticleAnalyzer.CLEAR_WORKSHEET , Measurements.AREA+Measurements.ELLIPSE+Measurements.MEAN, rt, 0.00, 10000.00, 0.00, 1.00)
			pa.analyze(self.__image)
			self.__roisArray=[]
			self.__roisArray=rm.getRoisAsArray()
			#rm.runCommand("Show All")
			#rm.runCommand("Select All")
			#rm.runCommand("Set Color", "blue")
			
			IJ.resetThreshold(self.__image)
			
			keys=self.__slidersDict.keys()
			for k in keys:
				if k.endswith("min"): 
					self.__slidersDict[k].setValue(0)
					self.__slidersDict[k].repaint()
				else:
					self.__slidersDict[k].setValue(self.__slidersDict[k].getMaximum())
					self.__slidersDict[k].repaint()
コード例 #4
0
def load_qcd_edges2(input_file_path):
    """load edges from roi *.zip file"""
    if os.path.isfile(input_file_path):
        roim = RoiManager(False)
        roim.runCommand("Open", input_file_path)
        edges = roim.getRoisAsArray()
        roim.close()
    else:
        edges = load_qcd_edges(os.path.splitext(input_file_path)[0] + '.json')
    return edges
コード例 #5
0
def apply_roi_arr(func):
    rm = RoiManager()
    rm = rm.getInstance()
    roi_arr = rm.getRoisAsArray()  # => list

    result_list = []
    for roi in roi_arr:
        result = func(roi)
        if result is not None:
            result_list.append(result)

    return result_list
コード例 #6
0
def perform_manual_qc(imp, rois, important_channel=1):
    """given cell rois generated by automatic methods, allow user to delete/add/redraw as appropriate"""
    for ch in range(imp.getNChannels()):
        imp.setC(ch + 1)
        sat_frac = 0.99 if (ch + 1) == important_channel else 0.01
        IJ.run(imp, "Enhance Contrast", "saturated={}".format(sat_frac))

    imp.setC(important_channel)
    IJ.setTool("freehand")
    proceed = False
    roim = RoiManager()
    roim.runCommand("Show all with labels")
    for roi in rois:
        roim.addRoi(roi)
    auto_rois_only = rois
    while not proceed:
        dialog = NonBlockingGenericDialog("Perform manual segmentation")
        dialog.setOKLabel("Proceed to next image...")
        dialog.addMessage("Perform manual correction of segmentation: ")
        dialog.addMessage(
            "Draw around cells and add to the region of interest manager (Ctrl+T). "
        )
        dialog.addMessage("Delete and redraw cells as appropriate. ")
        dialog.addMessage(
            "Then press \"proceed to next image\" when all cells have been added. "
        )
        dialog.showDialog()
        if dialog.wasCanceled():
            print("Manual segmentation canceled")
            return auto_rois_only
        elif dialog.wasOKed():
            if roim.getCount() == 0:
                rois = []
                confirm_dialog = GenericDialog("Continue?")
                confirm_dialog.addMessage(
                    "No rois selected in this FOV. Are you sure you want to proceed?"
                )
                confirm_dialog.setOKLabel("Yes, proceed")
                confirm_dialog.setCancelLabel("No, not yet")
                confirm_dialog.showDialog()
                if confirm_dialog.wasOKed():
                    proceed = True
            else:
                rois = roim.getRoisAsArray()
                proceed = True
    roim.reset()
    roim.close()
    for ch in range(imp.getNChannels()):
        imp.setC(ch + 1)
        IJ.run(imp, "Enhance Contrast", "saturated={}".format(0.35))
    imp.setC(important_channel)
    return rois
コード例 #7
0
def generate_cell_rois(seg_binary_imp):
    """generate rois from which cell shape information will be gleaned"""
    seg_binary_imp.killRoi()
    mxsz = seg_binary_imp.width * seg_binary_imp.height
    roim = RoiManager(False)
    pa_options = ParticleAnalyzer.AREA | ParticleAnalyzer.PERIMETER | ParticleAnalyzer.SHAPE_DESCRIPTORS
    pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, pa_options, None,
                          1000, mxsz)
    pa.setRoiManager(roim)
    roim.reset()
    pa.analyze(seg_binary_imp)
    rois = roim.getRoisAsArray()
    roim.reset()
    roim.close()
    return rois
コード例 #8
0
def get_no_nuclei_fully_enclosed(roi, full_nuclei_imp, overlap_threshold=0.65):
    """for a given cell roi and ImagePlus with binary nuclei, return how many nuclei lie ENTIRELY within the cell"""
    bbox = roi.getBounds()
    full_nuclei_imp.setRoi(roi)
    cropped_nuc_imp = full_nuclei_imp.crop()
    roi.setLocation(0, 0)
    cropped_nuc_imp.setRoi(roi)
    cropped_nuc_imp.killRoi()
    roim = RoiManager(False)
    mxsz = cropped_nuc_imp.getWidth() * cropped_nuc_imp.getHeight()
    pa = ParticleAnalyzer(
        ParticleAnalyzer.ADD_TO_MANAGER, ParticleAnalyzer.AREA
        | ParticleAnalyzer.SLICE | ParticleAnalyzer.CENTROID, None, 0, mxsz)
    pa.setRoiManager(roim)
    pa.analyze(cropped_nuc_imp)
    cell_imp = IJ.createImage("Cell binary", cropped_nuc_imp.getWidth(),
                              cropped_nuc_imp.getHeight(), 1, 8)
    IJ.run(cell_imp, "Select All", "")
    IJ.run(cell_imp, "Set...", "value=0 slice")
    cell_imp.setRoi(roi)
    IJ.run(cell_imp, "Set...", "value=255 slice")
    no_enclosed_nuclei = 0
    for idx, nuc_roi in enumerate(roim.getRoisAsArray()):
        test_imp = Duplicator().run(cell_imp)
        test_imp.setRoi(nuc_roi)
        IJ.run(test_imp, "Set...", "value=255 slice")
        test_imp.killRoi()
        IJ.run(test_imp, "Create Selection", "")
        IJ.run(test_imp, "Make Inverse", "")
        test_roi = test_imp.getRoi()
        test_roi_stats = test_roi.getStatistics()
        cell_roi_stats = roi.getStatistics()
        nuc_roi_stats = nuc_roi.getStatistics()
        if test_roi_stats.area < (
                cell_roi_stats.area +
            (1 - overlap_threshold) * nuc_roi_stats.area
        ):  # i.e. if more than (100*overlap_threshold)% of nucleus is inside cell...
            no_enclosed_nuclei += 1
        test_imp.changes = False
        test_imp.close()
    roi.setLocation(bbox.getX(), bbox.getY())
    cropped_nuc_imp.changes = False
    cropped_nuc_imp.close()
    cell_imp.changes = False
    cell_imp.close()
    return no_enclosed_nuclei
コード例 #9
0
def save_roi_set(imp=IJ.getImage()):

    img_dir, name = get_file_info()
    roi_dir = make_roi_dir(img_dir, name)
    roi_path = make_roi_path(roi_dir, name)

    Roi.setColor(Color.blue)
    rm = RoiManager().getInstance()
    rm.deselect()
    rm.runCommand("Save", roi_path)

    ol = imp.getOverlay()
    if ol is None:
        ol = Overlay()
    for roi in rm.getRoisAsArray():
        ol.add(roi)
        imp.setOverlay(ol)

    rm.runCommand("delete")
    ol.setStrokeColor(Color.blue)
    Roi.setColor(Color.yellow)
コード例 #10
0
def manual_analysis(imp, file_name, output_folder):
    """perform analysis based on manually drawn cells"""
    cal = imp.getCalibration()
    channel_imps = ChannelSplitter.split(imp)
    gfp_imp = channel_imps[0]
    IJ.setTool("freehand")
    proceed = False
    roim = RoiManager()
    roim.runCommand("Show all with labels")
    dialog = NonBlockingGenericDialog("Perform manual segmentation")
    dialog.setOKLabel("Proceed to next image...")
    dialog.addMessage("Perform manual segmentation: ")
    dialog.addMessage(
        "Draw around cells and add to the region of interest manager (Ctrl+T)")
    dialog.addMessage(
        "You can see what you've added so far if you check \"show all\" on the ROI manager"
    )
    dialog.addMessage(
        "Then press \"proceed to next image\" when all cells have been added")
    dialog.showDialog()
    if dialog.wasCanceled():
        raise KeyboardInterrupt("Run canceled")
    elif dialog.wasOKed():
        rois = roim.getRoisAsArray()
        roim.reset()
        roim.close()
        out_stats = generate_cell_shape_results(rois, gfp_imp, cal, file_name)
        print("Number of cells identified = {}".format(len(out_stats)))
        # save output
        save_qc_image(
            imp, rois, "{}_plus_overlay.tiff".format(
                os.path.join(output_folder,
                             os.path.splitext(file_name)[0])))
        save_cell_rois(rois, output_folder, os.path.splitext(file_name)[0])
        imp.changes = False
        imp.close()
        save_output_csv(out_stats, output_folder)
        return out_stats
    return None
コード例 #11
0
ファイル: MainProgram.py プロジェクト: jmil/MPI_Fiji_Scripts
def RoiSelection():
	true=1
	false=0
	IJ.run("Invert", "stack");
	IJ.run("Fill Holes", "stack");
	IJ.run("Create Selection");
	rm = RoiManager()
	rm.runCommand("add")
	rm.runCommand("split")
	#number_selected=rm.getCount()
	IJ.run("Select None");
	rm.runCommand("deselect")
	#rm.select(0)
	#print number_selected
	roi_array=rm.getRoisAsArray()
	max_roi=None
	max_points=-1
	for roi in roi_array:
	  polygon=roi.getPolygon()
	  if polygon is not None:
	    number_of_points = polygon.npoints
	    if max_points < number_of_points:
	      max_points=number_of_points
	      max_roi=roi
	#print max_points
	#sorted_roi_array=sorted(roi_array, key=methodcaller('getLength'), reverse=True)
	#length_array=[]
	#index=0
	#for roi in roi_array:
	#	index=index+1
	#	length_array.append((index,roi.getLength()))
	#sorted_length_array=sorted(length_array, key=itemgetter(0))
	rm.runCommand("Select All")
	rm.runCommand("Delete")
	#for roi in roi_array:
	interpolated_polygon=max_roi.getInterpolatedPolygon(20,True)
	roi_polygon=PolygonRoi(interpolated_polygon,Roi.POLYGON)
	rm.addRoi(roi_polygon)
コード例 #12
0
def poreDetectionUV(inputImp, inputDataset, inputRoi, ops, data, display,
                    detectionParameters):

    # set calibration
    detectionParameters.setCalibration(inputImp)

    # calculate area of roi
    stats = inputImp.getStatistics()
    inputRoiArea = stats.area

    # get the bounding box of the active roi
    inputRec = inputRoi.getBounds()
    x1 = long(inputRec.getX())
    y1 = long(inputRec.getY())
    x2 = x1 + long(inputRec.getWidth()) - 1
    y2 = y1 + long(inputRec.getHeight()) - 1

    # crop the roi
    interval = FinalInterval(array([x1, y1, 0], 'l'), array([x2, y2, 2], 'l'))
    #cropped=ops.image().crop(interval, None, inputDataset.getImgPlus() )
    cropped = ops.image().crop(inputDataset.getImgPlus(), interval)

    datacropped = data.create(cropped)
    display.createDisplay("cropped", datacropped)
    croppedPlus = IJ.getImage()

    # instantiate the duplicator and the substackmaker classes
    duplicator = Duplicator()
    substackMaker = SubstackMaker()

    # duplicate the roi
    duplicate = duplicator.run(croppedPlus)

    # convert duplicate of roi to HSB and get brightness
    IJ.run(duplicate, "HSB Stack", "")
    brightnessPlus = substackMaker.makeSubstack(duplicate, "3-3")
    brightness = ImgPlus(ImageJFunctions.wrapByte(brightnessPlus))
    brightnessPlus.setTitle("Brightness")
    #brightnessPlus.show()

    # make another duplicate, split channels and get red
    duplicate = duplicator.run(croppedPlus)
    channels = ChannelSplitter().split(duplicate)
    redPlus = channels[0]
    red = ImgPlus(ImageJFunctions.wrapByte(redPlus))

    # convert to lab
    IJ.run(croppedPlus, "Color Transformer", "colour=Lab")
    IJ.selectWindow('Lab')
    labPlus = IJ.getImage()

    croppedPlus.changes = False
    croppedPlus.close()

    # get the A channel
    APlus = substackMaker.makeSubstack(labPlus, "2-2")
    APlus.setTitle('A')
    #APlus.show()
    APlus.getProcessor().resetMinAndMax()
    #APlus.updateAndDraw()
    AThresholded = threshold(APlus, -10, 50)

    # get the B channel
    BPlus = substackMaker.makeSubstack(labPlus, "3-3")
    BPlus.setTitle('B')
    #BPlus.show()
    BPlus.getProcessor().resetMinAndMax()
    #BPlus.updateAndDraw()
    BThresholded = threshold(BPlus, -10, 50)

    # AND the Athreshold and Bthreshold to get a map of the red pixels
    ic = ImageCalculator()
    redMask = ic.run("AND create", AThresholded, BThresholded)
    IJ.run(redMask, "Divide...", "value=255")

    labPlus.close()

    fast = True

    # threshold the spots from the red channel
    if (fast == False):
        thresholdedred = SpotDetectionGray(red, data, display, ops, "triangle")
        impthresholdedred = ImageJFunctions.wrap(thresholdedred, "wrapped")
    else:
        impthresholdedred = SpotDetection2(redPlus)

    # threshold the spots from the brightness channel
    if (fast == False):
        thresholded = SpotDetectionGray(brightness, data, display, ops,
                                        "triangle")
        impthresholded = ImageJFunctions.wrap(thresholded, "wrapped")
    else:
        impthresholded = SpotDetection2(brightnessPlus)

    # or the thresholding results from red and brightness channel
    impthresholded = ic.run("OR create", impthresholded, impthresholdedred)

    roim = RoiManager(True)

    # convert to mask
    Prefs.blackBackground = True
    IJ.run(impthresholded, "Convert to Mask", "")

    def isRed(imp, roi):
        stats = imp.getStatistics()

        if (stats.mean > detectionParameters.porphyrinRedPercentage):
            return True
        else:
            return False

    def notRed(imp, roi):
        stats = imp.getStatistics()

        if (stats.mean > detectionParameters.porphyrinRedPercentage):
            return False
        else:
            return True

    roiClone = inputRoi.clone()
    roiClone.setLocation(0, 0)
    Utility.clearOutsideRoi(impthresholded, roiClone)

    impthresholded.show()

    countParticles(impthresholded, roim, detectionParameters.porphyrinMinSize, detectionParameters.porphyrinMaxSize, \
     detectionParameters.porphyrinMinCircularity, detectionParameters.porphyrinMaxCircularity)

    uvPoreList = []
    for roi in roim.getRoisAsArray():
        uvPoreList.append(roi.clone())

    #allList=uvPoreList+closedPoresList+openPoresList

    # count particles that are porphyrins (red)
    porphyrinList = CountParticles.filterParticlesWithFunction(
        redMask, uvPoreList, isRed)
    # count particles that are visible on uv but not porphyrins
    sebumList = CountParticles.filterParticlesWithFunction(
        redMask, uvPoreList, notRed)

    # for each roi add the offset such that the roi is positioned in the correct location for the
    # original image
    [
        roi.setLocation(roi.getXBase() + x1,
                        roi.getYBase() + y1) for roi in uvPoreList
    ]

    # draw the ROIs on to the image
    inputImp.getProcessor().setColor(Color.green)
    IJ.run(inputImp, "Line Width...", "line=3")
    inputImp.getProcessor().draw(inputRoi)
    IJ.run(inputImp, "Line Width...", "line=1")
    [
        CountParticles.drawParticleOnImage(inputImp, roi, Color.magenta)
        for roi in porphyrinList
    ]
    [
        CountParticles.drawParticleOnImage(inputImp, roi, Color.green)
        for roi in sebumList
    ]
    inputImp.updateAndDraw()

    # calculate stats for the UV visible particles
    detectionParameters.setCalibration(APlus)
    statsDictUV = CountParticles.calculateParticleStatsUV(
        APlus, BPlus, redMask, roim.getRoisAsArray())

    totalUVPoreArea = 0
    for area in statsDictUV['Areas']:
        totalUVPoreArea = totalUVPoreArea + area
    averageUVPoreArea = totalUVPoreArea / len(statsDictUV['Areas'])

    poreDiameter = 0
    for diameter in statsDictUV['Diameters']:
        poreDiameter = poreDiameter + diameter
    poreDiameter = poreDiameter / len(statsDictUV['Diameters'])

    redTotal = 0

    for red in statsDictUV['redPercentage']:
        redTotal = redTotal + red
    redAverage = redTotal / len(statsDictUV['redPercentage'])

    statslist = [len(porphyrinList), 100 * redAverage]
    statsheader = [Messages.Porphyrins, Messages.PercentageRedPixels]

    print("Roi Area: " + str(inputRoiArea))
    print("Total Pore Area: " + str(totalUVPoreArea))
    print("Average Pore Area: " + str(averageUVPoreArea))
    print str(len(uvPoreList)) + " " + str(len(porphyrinList)) + " " + str(
        len(sebumList)) + " " + str(
            100 * totalUVPoreArea / inputRoiArea) + " " + str(100 * redAverage)
    print "cp min circularity" + str(
        detectionParameters.closedPoresMinCircularity) + ":" + str(
            detectionParameters.closedPoresMinSize)

    # close the thresholded image
    impthresholded.changes = False
    impthresholded.close()

    return uvPoreList, statslist, statsheader
コード例 #13
0
display.createDisplay("log", data.create(ImgPlus(log)))

otsu=ops.run("threshold", ops.create( dimensions2D, BitType()), imgBgs, Otsu())
display.createDisplay("thresholded", data.create(ImgPlus(otsu)))
'''

#Utility.clearOutsideRoi(imp, clone)
IJ.run(imp, "Auto Local Threshold", "method=MidGrey radius=15 parameter_1=0 parameter_2=0 white");
IJ.run(imp, "Fill Holes", "");
IJ.run(imp, "Close-", "");
IJ.run(imp, "Watershed", "");

iplus.updateAndDraw()

# create a hidden roi manager
roim = RoiManager(True)
	
# count the particles
countParticles(iplus, roim, 10, 200, 0.5, 1.0)

[truecolor1.getProcessor().draw(roi) for roi in roim.getRoisAsArray()]
truecolor1.updateAndDraw()
	
#Prefs.blackBackground = False;
#IJ.run("Make Binary", "");

#IJ.run("LoG 3D");

#IJ.run("Duplicate...", "title="+"test")
#IJ.run("RGB Stack");
#IJ.run("Convert Stack to Images");
コード例 #14
0
ファイル: mcoloc.py プロジェクト: rejsmont/FijiScripts
	preview.show()
	rm = RoiManager()
	dialog = WaitForUserDialog("Action required", "Please select regions of interest in this image. Click OK when done.")
	dialog.show()
	rm.close()
	splitter = ChannelSplitter()
	imp1 = ImagePlus("CH1", splitter.getChannel(image, imageA))
	imp2 = ImagePlus("CH2", splitter.getChannel(image, imageB))
	title = image.getTitle()
	title = title[:title.rfind('.')]
	image.close()
	preview.close()
	ch1 = ImagePlusAdapter.wrap(imp1)
	ch2 = ImagePlusAdapter.wrap(imp2)

	for roi in rm.getRoisAsArray():
		container = createContainer(roi, ch1, ch2)
		img1 = container.getSourceImage1()
		img2 = container.getSourceImage2()
		mask = container.getMask()
		
		thr1, thrimp1 = calculateThreshold(imp1, roi, methods[0])
		thr2, thrimp2 = calculateThreshold(imp2, roi, methods[1])
		
		cursor = TwinCursor(img1.randomAccess(), img2.randomAccess(), Views.iterable(mask).localizingCursor())
		rtype = img1.randomAccess().get().createVariable()
		raw = manders.calculateMandersCorrelation(cursor, rtype)
		rthr1 = rtype.copy()
		rthr2 = rtype.copy()
		rthr1.set(thr1)
		rthr2.set(thr2)
コード例 #15
0
image_title = img.getShortTitle()

# make paths for moving when done.
full_img_path_orig = os.path.join(blinded_base, image_title + ".tif")
full_img_path_done = os.path.join(data, image_title + ".tif")

# get roi manager
roim = RoiManager().getRoiManager()

# make savepaths for csv and rois
roimsave = os.path.join(data, image_title + "_rois.zip")
csvsave = os.path.join(data, image_title + "_data.csv")

csv_ = [["image", "roi_name", "uncalibrated_length"]]

for roi, _ in enumerate(roim.getRoisAsArray()):
    target = roim.getRoi(roi)
    csv_.append([image_title, target.getName(), target.getLength()])

# write and save csv
with open(csvsave, "w") as c:
    writer = csv.writer(c)
    for l in csv_:
        writer.writerow(l)

# save rois
roim.runCommand("Deselect")
roim.runCommand("Save", roimsave)

# close both
roim.close()
コード例 #16
0
ファイル: RangeRois.py プロジェクト: leec13/MorphoBactDev
		def updatepressed(event):
			self.__image=IJ.getImage()
			rm = RoiManager.getInstance()
			if (rm==None): rm = RoiManager()
			rm.runCommand("reset")
			self.__image.killRoi()
			IJ.run("Threshold...")
			IJ.setAutoThreshold(self.__image, "MaxEntropy")
			
			rt=ResultsTable()
			pa=ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER+ParticleAnalyzer.CLEAR_WORKSHEET , Measurements.AREA+Measurements.ELLIPSE+Measurements.MEAN, rt, 0.00, 10000.00, 0.00, 1.00)
			pa.analyze(self.__image)
			self.__roisArray=[]
			self.__roisArray=rm.getRoisAsArray()
			#for i in range(rm.getCount()) : 
			#	rm.select(i)
			#	rm.runCommand("Set Color", "0000FF", 2)
				
			IJ.resetThreshold(self.__image)
			rt.show("tempRT")
			areas=rt.getColumn(ResultsTable.AREA)
			means=rt.getColumn(ResultsTable.MEAN)
			majors=rt.getColumn(ResultsTable.MAJOR)
			minors=rt.getColumn(ResultsTable.MINOR)
			#print 0
			if self.__slidersDict["Area_max"].getMaximum() <  int(max(areas)+1):
			#	print 1
				self.__slidersDict["Area_max"].setMaximum(int(max(areas))+1)
			if self.__slidersDict["Area_min"].getMaximum() < int(max(areas)+1):
			#	print 2
				self.__slidersDict["Area_min"].setMaximum(int(max(areas))+1)
			if self.__slidersDict["Mean_max"].getMaximum() < int(max(means)+1):
			#	print 3
				self.__slidersDict["Mean_max"].setMaximum(int(max(means))+1)
			if self.__slidersDict["Mean_min"].getMaximum() < int(max(means)+1):
			#	print 4
				self.__slidersDict["Mean_min"].setMaximum(int(max(means))+1)
			if self.__slidersDict["Major_max"].getMaximum() < int(max(majors)):
			#	print 5
				self.__slidersDict["Major_max"].setMaximum(int(max(majors))+1)
			if self.__slidersDict["Major_min"].getMaximum() < int(max(majors)+1):
			#	print 6
				self.__slidersDict["Major_min"].setMaximum(int(max(majors))+1)
			if self.__slidersDict["Minor_max"].getMaximum() < int(max(minors)+1):
			#	print 7
				self.__slidersDict["Minor_max"].setMaximum(int(max(minors))+1)
			if self.__slidersDict["Minor_min"].getMaximum() < int(max(minors)+1):
			#	print 8
				self.__slidersDict["Minor_min"].setMaximum(int(max(minors))+1)
			if self.__slidersDict["AR_max"].getMaximum() < int((max(majors)+1)/min(minors)+1):
			#	print 9
				self.__slidersDict["AR_max"].setMaximum(int((max(majors)+1)/(min(minors))))
			if self.__slidersDict["AR_min"].getMaximum() < int((max(majors)+1)/min(minors)):
			#	print 10
				self.__slidersDict["AR_min"].setMaximum(int((max(majors)+1)/(min(minors))))

			#print 11
				
			for sb in self.__slidersDict.values():
				sb.repaint()

			#rm.runCommand("reset")
			#temprois=self.getIncludeRois()
			#IJ.run(self.__image, "Remove Overlay", "")
			#o=Overlay()
			#for roi in temprois:
			#	o.addElement(roi)
			#self.__image.killRoi()
			#self.__image.setOverlay(o)
			self.__image.updateAndDraw()
コード例 #17
0
ファイル: Stack_Cells.py プロジェクト: leec13/MorphoBactDev
class StackCells(swing.JFrame):
	def __init__(self): 
		swing.JFrame.__init__(self, title="Stack Cells")
		self.__impD = IJ.getImage()
		self.setDefaultCloseOperation(swing.JFrame.DISPOSE_ON_CLOSE)
		self.__n=0
		self.__widthl = "11"
		self.__iplist = []
		self.__init = False
		self.__initDIA = False
		self.__initFLUO = False
		self.__skip = False
		self.__avg = True
		self.__mosa = True
		self.__maxfinder = True
		self.__appmedian = True
		self.__fire = True
		self.__align = True
		self.__alignC = False
		self.__enlarge = True
		self.__measures = True
		self.__sens = []
		self.__listrois = []
		self.__cellsrois = []
		self.__Cutoff = 0
		self.__labels = []
		self.__maxraf = 100.0
		self.__minraf = 0.0
		self.__conEllipses = False

		self.__dictCells = {}
		
		self.__rm = RoiManager.getInstance()
		if (self.__rm==None): self.__rm = RoiManager()
		self.run()
		
	def run(self) :
		

		self.size=(1100, 400)
		self.contentPane.layout = awt.BorderLayout()
		self.__display = swing.JTextField(preferredSize=(400, 30), horizontalAlignment=swing.SwingConstants.LEFT)
		self.__setDisplay()
		line = BorderFactory.createEtchedBorder(EtchedBorder.LOWERED)
		northpanel1=swing.JPanel(awt.FlowLayout(awt.FlowLayout.LEFT))
		northpanel1.setBorder(line)
		northpanel1.add(self.__display)
		new = swing.JButton("New", size=(100, 70), actionPerformed=self.__new)
		northpanel1.add(new)
		add = swing.JButton("Add", size=(100, 70), actionPerformed=self.__add)
		northpanel1.add(add)
		roiman = swing.JButton("Add Roi manager", size=(100, 70), actionPerformed= self.__addroi)
		northpanel1.add(roiman)
		end = swing.JButton("End", size=(100, 70), actionPerformed= self.__end)
		northpanel1.add(end)

		#grid = awt.GridLayout()
		#grid.setRows(2)
		#northpanel=swing.JPanel(grid)
		#northpanel.add(northpanel1)

		#northpanel2=swing.JPanel(awt.FlowLayout(awt.FlowLayout.LEFT))

		grid0 = awt.GridLayout()
		grid0.setRows(6)
		northpanel2=swing.JPanel(grid0)
		
		northpanel2.setBorder(line)
		label=swing.JLabel("Label2")
		label.setText("Line width ?")
		northpanel2.add(label)
		self.__display2 = swing.JTextField(preferredSize=(50, 30), horizontalAlignment=swing.SwingConstants.LEFT)
		self.__display2.text = "11"
		northpanel2.add(self.__display2)

		label=swing.JLabel("Label3")
		label.setText("Noise for peaks ?")
		northpanel2.add(label)
		self.__display3 = swing.JTextField(preferredSize=(50, 30), horizontalAlignment=swing.SwingConstants.LEFT)
		self.__display3.text = "100"
		northpanel2.add(self.__display3)

		label=swing.JLabel("Label4")
		label.setText("Fluo threshold ?")
		northpanel2.add(label)
		self.__display4 = swing.JTextField(preferredSize=(50, 30), horizontalAlignment=swing.SwingConstants.LEFT)
		self.__display4.text = "170"
		northpanel2.add(self.__display4)
		
		#northpanel3=swing.JPanel(awt.FlowLayout(awt.FlowLayout.LEFT))
		#northpanel3.setBorder(line)

		label=swing.JLabel("Label5")
		label.setText("Min of length ?")
		northpanel2.add(label)
		self.__display5 = swing.JTextField(preferredSize=(50, 30), horizontalAlignment=swing.SwingConstants.LEFT)
		self.__display5.text = "50"
		northpanel2.add(self.__display5)

		label=swing.JLabel("Label6")
		label.setText("Max of length ?")
		northpanel2.add(label)
		self.__display6 = swing.JTextField(preferredSize=(50, 30), horizontalAlignment=swing.SwingConstants.LEFT)
		self.__display6.text = "500"
		northpanel2.add(self.__display6)

		dia = swing.JButton("DIA", size=(100, 70), actionPerformed= self.__dia)
		northpanel2.add(dia)
		fluo = swing.JButton("FLUO", size=(100, 70), actionPerformed= self.__fluo)
		northpanel2.add(fluo)


		southpanel=swing.JPanel(awt.FlowLayout(awt.FlowLayout.RIGHT))
		southpanel.setBorder(line)
		
		help = swing.JButton("Help", size=(100, 70), actionPerformed=self.__help)
		
		self.__label=swing.JLabel("Label")
		southpanel.add(self.__label)
		close = swing.JButton("Close", size=(100, 70), actionPerformed=self.__close)

		southpanel.add(help)
		southpanel.add(close)		
				
		grid = awt.GridLayout()
		grid.setRows(4)
		checkpanel=swing.JPanel(grid)
		checkpanel.setBorder(line)
		
		self.__box0=swing.JCheckBox(actionPerformed=self.__boxaction0)
		self.__box0.setText("Skip failed ROIs")
		self.__box0.setSelected(False)
		
		self.__box1=swing.JCheckBox(actionPerformed=self.__boxaction1)
		self.__box1.setText("Mosaic")
		self.__box1.setSelected(True)
		
		self.__box2=swing.JCheckBox(actionPerformed=self.__boxaction2)
		self.__box2.setText("Mean Projection")
		self.__box2.setSelected(True)

		self.__box3=swing.JCheckBox(actionPerformed=self.__boxaction3)
		self.__box3.setText("Max Finder")
		self.__box3.setSelected(True)

		self.__box4=swing.JCheckBox(actionPerformed=self.__boxaction4)
		self.__box4.setText("Median filter")
		self.__box4.setSelected(True)

		self.__box5=swing.JCheckBox(actionPerformed=self.__boxaction5)
		self.__box5.setText("Fire LUT")
		self.__box5.setSelected(True)

		self.__box6=swing.JCheckBox(actionPerformed=self.__boxaction6)
		self.__box6.setText("Auto Align Left")
		self.__box6.setSelected(True)

		self.__box7=swing.JCheckBox(actionPerformed=self.__boxaction7)
		self.__box7.setText("Auto Enlarge")
		self.__box7.setSelected(True)

		self.__box8=swing.JCheckBox(actionPerformed=self.__boxaction8)
		self.__box8.setText("Measures")
		self.__box8.setSelected(True)
		
		self.__box9=swing.JCheckBox(actionPerformed=self.__boxaction9)
		self.__box9.setText("Auto Align Center")
		self.__box9.setSelected(False)
		
		self.__box10=swing.JCheckBox(actionPerformed=self.__boxaction10)
		self.__box10.setText("Use ellipses")
		self.__box10.setSelected(False)
		
		checkpanel.add(self.__box0)
		checkpanel.add(self.__box1)
		checkpanel.add(self.__box2)
		checkpanel.add(self.__box3)
		checkpanel.add(self.__box4)
		checkpanel.add(self.__box5)
		checkpanel.add(self.__box6)
		checkpanel.add(self.__box7)
		checkpanel.add(self.__box8)
		checkpanel.add(self.__box9)
		checkpanel.add(self.__box10)
		
		grid = awt.GridLayout()
		grid.setRows(10)
		checkpanel2=swing.JPanel(grid)
		checkpanel2.setBorder(line)

		label=swing.JLabel("Label7")
		label.setText("Max of Solidity")
		checkpanel2.add(label)
		self.__display7 = swing.JTextField(preferredSize=(50, 30), horizontalAlignment=swing.SwingConstants.LEFT)
		self.__display7.text = "1"
		checkpanel2.add(self.__display7)

		label=swing.JLabel("Label8")
		label.setText("Min of Solidity")
		checkpanel2.add(label)
		self.__display8 = swing.JTextField(preferredSize=(50, 30), horizontalAlignment=swing.SwingConstants.LEFT)
		self.__display8.text = "0"
		checkpanel2.add(self.__display8)

		label=swing.JLabel("Label9")
		label.setText("Max of Area")
		checkpanel2.add(label)
		self.__display9 = swing.JTextField(preferredSize=(50, 30), horizontalAlignment=swing.SwingConstants.LEFT)
		self.__display9.text = "1447680"
		checkpanel2.add(self.__display9)

		label=swing.JLabel("Label10")
		label.setText("Min of Area")
		checkpanel2.add(label)
		self.__display10 = swing.JTextField(preferredSize=(50, 30), horizontalAlignment=swing.SwingConstants.LEFT)
		self.__display10.text = "1"
		checkpanel2.add(self.__display10)

		label=swing.JLabel("Label11")
		label.setText("Max of Circ")
		checkpanel2.add(label)
		self.__display11 = swing.JTextField(preferredSize=(50, 30), horizontalAlignment=swing.SwingConstants.LEFT)
		self.__display11.text = "1"
		checkpanel2.add(self.__display11)

		label=swing.JLabel("Label12")
		label.setText("Min of Circ")
		checkpanel2.add(label)
		self.__display12 = swing.JTextField(preferredSize=(50, 30), horizontalAlignment=swing.SwingConstants.LEFT)
		self.__display12.text = "0"
		checkpanel2.add(self.__display12)

		label=swing.JLabel("Label13")
		label.setText("Max of AR")
		checkpanel2.add(label)
		self.__display13 = swing.JTextField(preferredSize=(50, 30), horizontalAlignment=swing.SwingConstants.LEFT)
		self.__display13.text = "1392"
		checkpanel2.add(self.__display13)

		label=swing.JLabel("Label14")
		label.setText("Min of AR")
		checkpanel2.add(label)
		self.__display14 = swing.JTextField(preferredSize=(50, 30), horizontalAlignment=swing.SwingConstants.LEFT)
		self.__display14.text = "1"
		checkpanel2.add(self.__display14)

		label=swing.JLabel("Label15")
		label.setText("Max of Feret")
		checkpanel2.add(label)
		self.__display15 = swing.JTextField(preferredSize=(50, 30), horizontalAlignment=swing.SwingConstants.LEFT)
		self.__display15.text = "1392"
		checkpanel2.add(self.__display15)

		label=swing.JLabel("Label16")
		label.setText("Min of Feret")
		checkpanel2.add(label)
		self.__display16 = swing.JTextField(preferredSize=(50, 30), horizontalAlignment=swing.SwingConstants.LEFT)
		self.__display16.text = "1"
		checkpanel2.add(self.__display16)

		label=swing.JLabel("Label17")
		label.setText("Max of Mean")
		checkpanel2.add(label)
		self.__display17 = swing.JTextField(preferredSize=(50, 30), horizontalAlignment=swing.SwingConstants.LEFT)
		self.__display17.text = "65535"
		checkpanel2.add(self.__display17)

		label=swing.JLabel("Label18")
		label.setText("Min of Mean")
		checkpanel2.add(label)
		self.__display18 = swing.JTextField(preferredSize=(50, 30), horizontalAlignment=swing.SwingConstants.LEFT)
		self.__display18.text = "0"
		checkpanel2.add(self.__display18)

		label=swing.JLabel("Label19")
		label.setText("max ratio Axis/Feret")
		checkpanel2.add(label)
		self.__display19 = swing.JTextField(preferredSize=(50, 30), horizontalAlignment=swing.SwingConstants.LEFT)
		self.__display19.text = str(self.__maxraf)
		checkpanel2.add(self.__display19)

		label=swing.JLabel("Label20")
		label.setText("Min ratio Axis/Feret")
		checkpanel2.add(label)
		self.__display20 = swing.JTextField(preferredSize=(50, 30), horizontalAlignment=swing.SwingConstants.LEFT)
		self.__display20.text = str(self.__minraf)
		checkpanel2.add(self.__display20)

		label=swing.JLabel("Label21")
		label.setText("Max MinFeret")
		checkpanel2.add(label)
		self.__display21 = swing.JTextField(preferredSize=(50, 30), horizontalAlignment=swing.SwingConstants.LEFT)
		self.__display21.text = "1392"
		checkpanel2.add(self.__display21)

		label=swing.JLabel("Label22")
		label.setText("Min MinFeret")
		checkpanel2.add(label)
		self.__display22 = swing.JTextField(preferredSize=(50, 30), horizontalAlignment=swing.SwingConstants.LEFT)
		self.__display22.text = "1"
		checkpanel2.add(self.__display22)
		
		
		self.contentPane.add(northpanel1, awt.BorderLayout.NORTH)
		self.contentPane.add(checkpanel, awt.BorderLayout.WEST)
		self.contentPane.add(northpanel2, awt.BorderLayout.CENTER)
		self.contentPane.add(southpanel, awt.BorderLayout.SOUTH)
		self.contentPane.add(checkpanel2, awt.BorderLayout.EAST)


	def __close(self, event):
		self.oked = True
		time.sleep(0.01) 
		self.dispose()

	def __new(self, event): 
		self.__init = True
		self.__n += 1
		self.__name = "stackcells"+str(self.__n)
		self.__display.text = self.__name
		self.__sens[:] = []
		self.__listrois[:] = []
		self.__iplist[:] = []
		self.__cellsrois[:] = []
		self.__labels[:] = []

	def __add(self, event): 
		if ( not self.__init) : 
			IJ.showMessage("", "please start a new stack")
			return
		if ( not self.__initDIA) :
			IJ.showMessage("", "please select an image for DIA")
			return

		if ( not self.__initFLUO) :
			IJ.showMessage("", "please select an image for FLUO")
			return
		
		self.__widthl = self.__display2.getText()
		roi = self.__impD.getRoi()
		
		if roi == None : 
			IJ.showMessage("", "No selection")
			return

		if roi.getType() in [6,7] : 		
			nslice = self.__impD.getCurrentSlice()
			self.__impF.setSlice(nslice)
			self.__impF.setRoi(roi)
		elif roi.getType() in [2,4] :
			nslice = self.__impD.getCurrentSlice()
			self.__impF.setSlice(nslice)
			m=Morph(self.__impF, roi)
			m.setMidParams(10, 2)
			roi=m.MidAxis
			if roi == None :
				self.__display.text = "roi fail"
				if not self.__skip : IJ.showMessage("", "failed roi, please draw it as polyline")
				return				

		#if roi.getType() != 6 : self.__impF.setRoi(roi)
		else : 
			IJ.showMessage("", "This selection is not yet allowed")
			return

		self.__impF.setRoi(roi)
		
		straightener = Straightener()
		new_ip = straightener.straighten(self.__impF, roi, int(self.__widthl))
		
		self.__iplist.append(new_ip)
		self.__labels.append(self.__isF.getShortSliceLabel(nslice))
		
		self.__display.text = self.__name + " cell " + str(len(self.__iplist)) +" width="+str(new_ip.getWidth())+ " height="+ str(new_ip.getHeight())
		roi.setPosition(self.__impD.getCurrentSlice())	

		self.__rm = RoiManager.getInstance()
		if (self.__rm==None): self.__rm = RoiManager()
		
		self.__rm.add(self.__impD, roi, len(self.__iplist))
		self.__cellsrois.append((roi, self.__impD.getCurrentSlice()))
		#self.__rm.runCommand("Show All")

		IJ.selectWindow(self.__impD.getTitle()) 
		
		
	def __end(self, event): 
		if len(self.__iplist)==0 : 
			IJ.showMessage("", "Stack is empty")
			return
		self.__ipw=[ ip.getWidth() for ip in self.__iplist ]
		self.__iph=[ ip.getHeight() for ip in self.__iplist ]
		maxw=max(self.__ipw)
		maxh=max(self.__iph)
		if self.__enlarge : 
			resizelist = [ ip.resize(maxw, maxh, True) for ip in self.__iplist ]
			
		else : 
			resizelist = []
			for ip in self.__iplist :
				tempip = ShortProcessor(maxw, maxh)
				tempip.copyBits(ip, 0, 0, Blitter.COPY)
				resizelist.append(tempip)
				
		ims = ImageStack(maxw, maxh) 	
		
		
		#for ip in resizelist : ims.addSlice("", ip)
		for i in range(len(resizelist)) : 
			ims.addSlice(self.__labels[i], resizelist[i])
		
		
		self.__impRes = ImagePlus(self.__name, ims)
		self.__impRes.show()

		self.__sens = [1 for i in range(len(self.__iplist)) ]
		
		if self.__appmedian : IJ.run(self.__impRes, "Median...", "radius=1 stack")
		
		if self.__align : self.__falign()
		if self.__avg : self.__favg()
		if self.__mosa : self.__fmosa()
		if self.__maxfinder : self.__fmaxfinder()
		if self.__fire : IJ.run(self.__impRes, "Fire", "")
		if self.__measures : self.__fmeasures()
		
		self.__sens[:] = []
		self.__listrois[:] = []
		self.__iplist[:] = []
		self.__cellsrois[:] = []
		self.__ipw[:] = []
		self.__iph[:] = []

		self.__init = False
		
	def __dia(self, event): 
		IJ.run("Set Scale...", "distance=0 known=0 pixel=1 unit=pixel")
		#IJ.run("Properties...", "channels=1 slices=1 frames=20 unit=pixel pixel_width=1.0000 pixel_height=1.0000 voxel_depth=1.0000 frame=[1 sec] origin=0,0");
		self.__impD = IJ.getImage()
		self.__isD = self.__impD.getImageStack()
		self.__display.text = "DIA="+self.__impD.getTitle()
		self.__initDIA = True

	def __fluo(self, event): 
		IJ.run("Set Scale...", "distance=0 known=0 pixel=1 unit=pixel")
		self.__impF = IJ.getImage()
		self.__isF = self.__impF.getImageStack()
		self.__display.text = "FLUO="+self.__impF.getTitle()
		self.__initFLUO = True

	def __addroi(self, event) :
		if ( not self.__init) : 
			IJ.showMessage("", "please start a new stack")
			return
		if ( not self.__initDIA) :
			IJ.showMessage("", "please select an image for DIA")
			return

		if ( not self.__initFLUO) :
			IJ.showMessage("", "please select an image for FLUO")
			return

		twres = TextWindow("measures-"+self.__name, "label\tname\tsol\tarea\tcirc\tAR\tFeret\taxis\traf\tdMajor\tdFeret\tdArea", "", 300, 450)
		tab="\t"
		
		self.__widthl = self.__display2.getText()
		IJ.selectWindow(self.__impF.getTitle())

		self.__rm = RoiManager.getInstance()
		if (self.__rm==None): self.__rm = RoiManager()

		if self.__impF.getImageStackSize() > 1 :
			roisarray =[(roi, self.__rm.getSliceNumber(roi.getName())) for roi in self.__rm.getRoisAsArray()]
		else : 
			roisarray =[(roi, 1) for roi in self.__rm.getRoisAsArray()]
			
		self.__rm.runCommand("reset")
		#self.__rm.runCommand("Delete")
		IJ.selectWindow(self.__impF.getTitle())

		self.__maxraf=float(self.__display19.text)
		self.__minraf=float(self.__display20.text)

		count=1

		for roielement in roisarray :
			roi = roielement[0]
			pos = roielement[1]
			lab = self.__impF.getImageStack().getShortSliceLabel(pos)

			if lab==None : lab=str(pos)
			
			if self.__conEllipses :
				IJ.selectWindow(self.__impF.getTitle())
				self.__impF.setSlice(pos)
				self.__impF.setRoi(roi)
				self.__rm.runCommand("Add")
				IJ.run(self.__impF,  "Fit Ellipse", "")
				ellipse=self.__impF.getRoi()
				params = ellipse.getParams()
				ferets = ellipse.getFeretValues()
				imp2 = Duplicator().run(self.__impF,pos,pos)
				IJ.run(imp2, "Rotate... ", "angle="+str(ferets[1])+" grid=0 interpolation=Bilinear enlarge slice")
				temproi=Roi((imp2.getWidth()-ferets[0])/2.0,(imp2.getHeight()-ferets[2])/2.0,ferets[0],ferets[2])
				imp2.setRoi(temproi)
				imp3 = Duplicator().run(imp2,1,1)
				ip3=imp3.getProcessor()

				if int(self.__display5.text) < ip3.getWidth() < int(self.__display6.text) : 
					self.__iplist.append(ip3)
					self.__display.text = self.__name + " cell " + str(len(self.__iplist))
					fer=Line(params[0],params[1],params[2],params[3])
					self.__cellsrois.append((fer, pos))
					self.__labels.append(self.__isF.getShortSliceLabel(pos))

				m=Morph(self.__impF, roi)

				twres.append(lab+tab+str(roi.getName())+tab+str(m.Solidity)+tab+str(m.Area)+tab+str(m.Circ)+tab+str(m.AR)+tab+str(m.MaxFeret)+tab+str(fer.getLength())+tab+str(1)+tab+str(0)+tab+str(0)+tab+str(0))
				self.__dictCells[count]=(str(roi.getName()), lab, roi)
				count=count+1
				continue
			
			if roi.getType() in [6,7] : 
				self.__impF.setSlice(pos)
				self.__impF.setRoi(roi)
				self.__rm.runCommand("Add")

			elif roi.getType() in [2,4] :
				self.__impF.setSlice(pos)
				self.__impF.setRoi(roi)
				m=Morph(self.__impF, roi)
				m.setMidParams(10, 2)
				midroi=m.MidAxis
				if midroi == None : continue

				raf = m.MaxFeret/midroi.getLength()
				
				if (self.__maxraf < raf) or (raf < self.__minraf) : continue

				maxsol = float(self.__display7.text)
				minsol = float(self.__display8.text)
				maxarea = float(self.__display9.text)
				minarea = float(self.__display10.text)
				maxcirc = float(self.__display11.text)
				mincirc = float(self.__display12.text)
				maxar = float(self.__display13.text)
				minar = float(self.__display14.text)
				maxfer = float(self.__display15.text)
				minfer = float(self.__display16.text)
				maxmean = float(self.__display17.text)
				minmean = float(self.__display18.text)
				maxmferet = float(self.__display21.text)
				minmferet = float(self.__display22.text)

				testsol = (minsol< m.Solidity < maxsol)
				testarea = (minarea< m.Area < maxarea)
				testcirc = (mincirc< m.Circ < maxcirc)
				testar = (minar< m.AR < maxar)
				testfer = (minfer< m.MaxFeret < maxfer)
				testmean = (minmean < m.Mean < maxmean)
				testmferet = (minmferet < m.MinFeret < maxmferet)
				
				#print minmferet , m.MinFeret , maxmferet

				test = (testsol+testarea+testcirc+testar+testfer+testmean+testmferet)/7	

				if test : 				
					
					fmaj, ffmx, fa =[],[],[]
					for r in m.getMidSegments(10, 40, 0) :
						if r == None : continue
						m2=Morph(self.__impF, r)
						fmaj.append(m2.Major)
						ffmx.append(m2.MaxFeret)
						fa.append(m2.Area)

					diffmajor, diffferet, diffarea = 0,0,0
					
					if len(fa) > 4 :
						medfmaj = self.listmean(fmaj[1:-1])
						medffmx = self.listmean(ffmx[1:-1])
						medfa   = self.listmean(fa[1:-1])

						diffmajor = (max(fmaj[1:-1])-medfmaj)/medfmaj
						diffferet = (max(ffmx[1:-1])-medffmx)/medffmx
						diffarea = (max(fa[1:-1])-medfa)/medfa

					twres.append(lab+tab+str(roi.getName())+tab+str(m.Solidity)+tab+str(m.Area)+tab+str(m.Circ)+tab+str(m.AR)+tab+str(m.MaxFeret)+tab+str(midroi.getLength())+tab+str(m.MaxFeret/midroi.getLength())+tab+str(diffmajor)+tab+str(diffferet)+tab+str(diffarea))
					#print lab+tab+str(roi.getName())+tab+str(m.Solidity)+tab+str(m.Area)+tab+str(m.Circ)+tab+str(m.AR)+tab+str(m.MaxFeret)+tab+str(midroi.getLength())+tab+str(m.MaxFeret/midroi.getLength())+tab+str(diffmajor)+tab+str(diffferet)+tab+str(diffarea)

					self.__impF.setRoi(roi)
					self.__rm.runCommand("Add")
					self.__impF.killRoi()
					self.__impF.setRoi(midroi)
					
					#self.__dictCells[str(roi.getName())]=(str(roi.getName()), lab, roi)
					self.__dictCells[count]=(str(roi.getName()), lab, roi)
					count=count+1
					
				else : 
					#print "test falls"
					continue

			else : 
				print "out loop"
				continue
			
			straightener = Straightener()
			new_ip = straightener.straighten(self.__impF, midroi, int(self.__widthl))
			
			if int(self.__display5.text) < new_ip.getWidth() < int(self.__display6.text) : 
				self.__iplist.append(new_ip)
				self.__display.text = self.__name + " cell " + str(len(self.__iplist))
				#print "add", roi.getName(), roi.getType()
				self.__cellsrois.append((midroi, pos))
				self.__labels.append(self.__isF.getShortSliceLabel(pos))


		#roisarray=self.__rm.getRoisAsArray()		
		#self.__rm.runCommand("reset")
		#self.__rm.runCommand("Delete")
		

		self.__impD.killRoi()
		self.__impF.killRoi()
		IJ.selectWindow(self.__impD.getTitle()) 

	def __boxaction0(self, event):
		self.__skip = event.getSource().isSelected()
		
	def __boxaction1(self, event):
		self.__mosa = event.getSource().isSelected()
		#self.__setDisplay(str(event.getSource().text)+" is "+str(event.getSource().isSelected()))
		
	def __boxaction2(self, event):
		self.__avg = event.getSource().isSelected()
		#self.__setDisplay(str(event.getSource().text)+" is "+str(event.getSource().isSelected()))

	def __boxaction3(self, event):
		self.__maxfinder = event.getSource().isSelected()
		#self.__setDisplay(str(event.getSource().text)+" is "+str(event.getSource().isSelected()))

	def __boxaction4(self, event):
		self.__appmedian = event.getSource().isSelected()
		#self.__setDisplay(str(event.getSource().text)+" is "+str(event.getSource().isSelected()))

	def __boxaction5(self, event):
		self.__fire = event.getSource().isSelected()
		#self.__setDisplay(str(event.getSource().text)+" is "+str(event.getSource().isSelected()))

	def __boxaction6(self, event):
		self.__align = event.getSource().isSelected()
		#self.__setDisplay(str(event.getSource().text)+" is "+str(event.getSource().isSelected()))

	def __boxaction7(self, event):
		self.__enlarge = event.getSource().isSelected()
		#self.__setDisplay(str(event.getSource().text)+" is "+str(event.getSource().isSelected()))

	def __boxaction8(self, event):
		self.__measures = event.getSource().isSelected()
		#self.__setDisplay(str(event.getSource().text)+" is "+str(event.getSource().isSelected()))

	def __boxaction9(self, event):
		self.__alignC = event.getSource().isSelected()
		#self.__setDisplay(str(event.getSource().text)+" is "+str(event.getSource().isSelected()))
	
	def __boxaction10(self, event):
		self.__conEllipses = event.getSource().isSelected()
	
	def __favg(self) :
		zp = ZProjector(self.__impRes) 
		zp.setMethod(ZProjector.AVG_METHOD)
		zp.doProjection() 
		imp = zp.getProjection()
		imp.show()
		if self.__fire : IJ.run(imp, "Fire", "")

	def __fmosa(self) :
		mm = MontageMaker()
		imp = mm.makeMontage2(self.__impRes, 1, self.__impRes.getStackSize(), 1, 1, self.__impRes.getStackSize(), 1, 0, False)
		imp.setTitle("MONTAGE"+self.__name)
		imp.show()
		if self.__fire : IJ.run(imp, "Fire", "")

	def __fmaxfinder(self) :
		#stack = self.__impRes.getStack()
		self.__impD.killRoi()
		self.__impF.killRoi()
		stack = self.__impF.getStack()
		n_slices = stack.getSize()
		#newstack=ImageStack(self.__impRes.getWidth(), self.__impRes.getHeight())
		newstack=ImageStack(self.__impF.getWidth(), self.__impF.getHeight())
		noise = self.__display3.text
		for index in range(1,n_slices+1):
			IJ.selectWindow(self.__impF.getTitle())
			self.__impF.setSlice(index)
			ip = self.__impF.getProcessor()
			mf=MaximumFinder()
			ipmax = mf.findMaxima(ip, int(noise), 0, 0, False, False)
			newstack.addSlice("", ipmax)
			

		newimage=ImagePlus("max points"+self.__name, newstack)
		newimage.show()
		newimage.updateAndDraw()
		
		listip = []
		maxh=self.__impRes.getHeight()

		for roi in self.__cellsrois : 
			straightener = Straightener()
			newimage.setSlice(roi[1])
			newimage.setRoi(roi[0])
			#listip.append(straightener.straighten(newimage, roi[0], int(self.__widthl)))
			listip.append(straightener.straighten(newimage, roi[0], maxh))
		
		ipw=[ ip.getWidth() for ip in listip ]
		iph=[ ip.getHeight() for ip in listip ]
		maxw=max(ipw)
		maxh=max(iph)
		
		if self.__enlarge : resizelist = [ ip.resize(maxw, maxh, True) for ip in listip ]
		
		elif  self.__alignC : 
			resizelist = []
			for ip in listip :
				tempip = ByteProcessor(maxw, maxh)
				tempip.copyBits(ip, 0, 0, Blitter.COPY)
				resizelist.append(tempip)

		else :
			resizelist = []
			for ip in listip :
				tempip = ByteProcessor(maxw, maxh)
				tempip.copyBits(ip, 0, 0, Blitter.COPY)
				resizelist.append(tempip)
				
		ims = ImageStack(maxw, maxh) 	
		
		#for ip in resizelist : ims.addSlice("", ip)
		for i in range(len(resizelist)) : 
			ims.addSlice(self.__labels[i], resizelist[i])
		
		self.__impMax = ImagePlus(self.__name+"-max", ims)
		self.__impMax.show()
		stack = self.__impMax.getStack() # get the stack within the ImagePlus
		n_slices = stack.getSize()
		
		for index in range(1, n_slices+1):
			self.__impMax.killRoi()	
			self.__impMax.setSlice(index)
			roi = self.__listrois[index-1]
			
			if self.__sens[index-1]<0 : 
				self.__impMax.setRoi(roi)
				ip1 = self.__impMax.getProcessor()
				ip1.flipHorizontal()
				self.__impMax.killRoi()
				self.__impMax.updateAndDraw()

			ip = self.__impMax.getProcessor()
			for i in range(ip.getWidth()*ip.getHeight()) :
				if ip.getf(i) > 0 : ip.setf(i, 255)
				#else : ip.setf(i, 0)

		IJ.run(self.__impMax, "8-bit", "")
		IJ.run(self.__impMax, "Options...", "iterations=2 count=1 black edm=Overwrite do=Close stack")
		IJ.run(self.__impMax, "Ultimate Points", "stack")
		
		self.__impMax.updateAndDraw()
		


	def __falign(self) :
		
		#self.__impRes=IJ.getImage()
		stack = self.__impRes.getStack() # get the stack within the ImagePlus
		n_slices = stack.getSize() # get the number of slices
		ic = ImageCalculator()
		w = self.__impRes.getWidth()
		h = self.__impRes.getHeight()
		self.__sens[:] = []
		self.__listrois[:] = []

		
		
		for index in range(1, n_slices+1):	
			
			self.__impRes.setSlice(index)
			ip1 = stack.getProcessor(index)
			imp1 = ImagePlus("imp1-"+str(index), ip1)
			imp1sqr = ic.run("Multiply create 32-bit", imp1, imp1)			

			IJ.setThreshold(imp1sqr, 1, 4294836225)
			IJ.run(imp1sqr, "Create Selection", "")
			roi = imp1sqr.getRoi()
			rect=roi.getBounds()
			roi = Roi(rect)
			self.__listrois.append(roi)
			ipsqr = imp1sqr.getProcessor()
			is1 = ipsqr.getStatistics()
			self.__impRes.killRoi()

			
			
			if is1.xCenterOfMass > w/2.00 : 
				self.__impRes.setRoi(roi)
				ip1 = self.__impRes.getProcessor()
				ip1.flipHorizontal()
				self.__impRes.killRoi()
				self.__sens.append(-1)
			else : self.__sens.append(1)
				
			self.__impRes.updateAndDraw()

			
	def __fmeasures(self) : 
		self.__Cutoff = float(self.__display4.text)
		nslices = self.__impRes.getImageStackSize() 
		rt = ResultsTable()
		rt.show("RT-"+self.__name)
		twpoints = TextWindow("points-"+self.__name, "index\tlabel\tname\tx\ty\taxis\tcellw\tcellh", "", 200, 450)
		twlabels = TextWindow("labels-"+self.__name, "index\tlabel\tname\tnpoints", "", 200, 450)

		isres = self.__impRes.getImageStack()
		
		for index in range(1, nslices+1):	
			self.__impRes.setSlice(index)
			self.__impRes.killRoi()
			roi = self.__listrois[index-1]
			self.__impRes.setRoi(roi)
			analyser= Analyzer(self.__impRes, Analyzer.LABELS+Analyzer.CENTER_OF_MASS+Analyzer.CENTROID+Analyzer.INTEGRATED_DENSITY+Analyzer.MEAN+Analyzer.KURTOSIS+Analyzer.SKEWNESS+Analyzer.MIN_MAX+Analyzer.SLICE+Analyzer.STACK_POSITION+Analyzer.STD_DEV, rt)
			analyser.measure()
			rt.show("RT-"+self.__name)
			
			rect=roi.getBounds()
			ip = self.__impRes.getProcessor()

			xCoord = []
			yCoord = []
			currentPixel = []

			m00 = 0.00
			m10 = 0.00
			m01 = 0.00
			
			mc20 = 0.00
			mc02 = 0.00
			mc11 = 0.00
			mc30 = 0.00
			mc03 = 0.00
			mc21 = 0.00
			mc12 = 0.00
			mc40 = 0.00
			mc04 = 0.00
			mc31 = 0.00
			mc13 = 0.00

			mm20 = 0.00
			mm02 = 0.00
			mm11 = 0.00
			mm30 = 0.00
			mm03 = 0.00
			mm21 = 0.00
			mm12 = 0.00
			mm40 = 0.00
			mm04 = 0.00
			mm31 = 0.00
			mm13 = 0.00
			
			
			for y in range(rect.y, rect.y+rect.height, 1) :
				for x in range(rect.x, rect.x+rect.width, 1) :
					xCoord.append(x+0.5)
					yCoord.append(y+0.5)
					#pixel=ip.getf(x,y)-self.__Cutoff
					pixel = ip.getPixelValue(x,y)-self.__Cutoff
					if pixel < 0 : pixel = 0
					currentPixel.append(pixel)
					m00 += currentPixel[-1]
					m10 += currentPixel[-1]*xCoord[-1]
					m01 += currentPixel[-1]*yCoord[-1]


			xm = m10/(m00+0.00000001)
			ym = m01/(m00+0.00000001)

			xc = rect.width/2.00
			yc = rect.height/2.00

			for i in range(rect.width*rect.height) :

				xcrel = xCoord[i]-xc
				ycrel = yCoord[i]-yc
			
				#mc20 += currentPixel[i]*(xCoord[i]-xc)*(xCoord[i]-xc)
				#mc02 += currentPixel[i]*(yCoord[i]-yc)*(yCoord[i]-yc)
				#mc11 += currentPixel[i]*(xCoord[i]-xc)*(yCoord[i]-yc)
				#
				#mc30 += currentPixel[i]*(xCoord[i]-xc)*(xCoord[i]-xc)*(xCoord[i]-xc)
				#mc03 += currentPixel[i]*(yCoord[i]-yc)*(yCoord[i]-yc)*(yCoord[i]-yc)
				#mc21 += currentPixel[i]*(xCoord[i]-xc)*(xCoord[i]-xc)*(yCoord[i]-yc)
				#mc12 += currentPixel[i]*(xCoord[i]-xc)*(yCoord[i]-yc)*(yCoord[i]-yc)
				#
				#mc40 += currentPixel[i]*(xCoord[i]-xc)*(xCoord[i]-xc)*(xCoord[i]-xc)*(xCoord[i]-xc)
				#mc04 += currentPixel[i]*(yCoord[i]-yc)*(yCoord[i]-yc)*(yCoord[i]-yc)*(yCoord[i]-yc)
				#mc31 += currentPixel[i]*(xCoord[i]-xc)*(xCoord[i]-xc)*(xCoord[i]-xc)*(yCoord[i]-yc)
				#mc13 += currentPixel[i]*(xCoord[i]-xc)*(yCoord[i]-yc)*(yCoord[i]-yc)*(yCoord[i]-yc)

				mc20 += currentPixel[i]*xcrel*xcrel
				mc02 += currentPixel[i]*ycrel*ycrel
				mc11 += currentPixel[i]*xcrel*ycrel
				
				mc30 += currentPixel[i]*xcrel*xcrel*xcrel
				mc03 += currentPixel[i]*ycrel*ycrel*ycrel
				mc21 += currentPixel[i]*xcrel*xcrel*ycrel
				mc12 += currentPixel[i]*xcrel*ycrel*ycrel
				
				mc40 += currentPixel[i]*xcrel*xcrel*xcrel*xcrel
				mc04 += currentPixel[i]*ycrel*ycrel*ycrel*ycrel
				mc31 += currentPixel[i]*xcrel*xcrel*xcrel*ycrel
				mc13 += currentPixel[i]*xcrel*ycrel*ycrel*ycrel

			
			for i in range(rect.width*rect.height) :
				mm20 += currentPixel[i]*(xCoord[i]-xm)*(xCoord[i]-xm)
				mm02 += currentPixel[i]*(yCoord[i]-ym)*(yCoord[i]-ym)
				mm11 += currentPixel[i]*(xCoord[i]-xm)*(yCoord[i]-ym)

				mm30 += currentPixel[i]*(xCoord[i]-xm)*(xCoord[i]-xm)*(xCoord[i]-xm)
				mm03 += currentPixel[i]*(yCoord[i]-ym)*(yCoord[i]-ym)*(yCoord[i]-ym)
				mm21 += currentPixel[i]*(xCoord[i]-xm)*(xCoord[i]-xm)*(yCoord[i]-ym)
				mm12 += currentPixel[i]*(xCoord[i]-xm)*(yCoord[i]-ym)*(yCoord[i]-ym)

				mm40 += currentPixel[i]*(xCoord[i]-xm)*(xCoord[i]-xm)*(xCoord[i]-xm)*(xCoord[i]-xm)
				mm04 += currentPixel[i]*(yCoord[i]-ym)*(yCoord[i]-ym)*(yCoord[i]-ym)*(yCoord[i]-ym)
				mm31 += currentPixel[i]*(xCoord[i]-xm)*(xCoord[i]-xm)*(xCoord[i]-xm)*(yCoord[i]-ym)
				mm13 += currentPixel[i]*(xCoord[i]-xm)*(yCoord[i]-ym)*(yCoord[i]-ym)*(yCoord[i]-ym)

			
			
			xxcVar = mc20/m00
			yycVar = mc02/m00
			xycVar = mc11/m00

			xcSkew = mc30/(m00 * math.pow(xxcVar,(3.0/2.0)))
			ycSkew = mc03/(m00 * math.pow(yycVar,(3.0/2.0)))

			xcKurt = mc40 / (m00 * math.pow(xxcVar,2.0)) - 3.0
			ycKurt = mc04 / (m00 * math.pow(yycVar,2.0)) - 3.0

			ecc = (math.pow((mc20-mc02),2.0)+(4.0*mc11*mc11))/m00
			
			xxmVar = mm20/m00
			yymVar = mm02/m00
			xymVar = mm11/m00

			xmSkew = mm30/(m00 * math.pow(xxmVar,(3.0/2.0)))
			ymSkew = mm03/(m00 * math.pow(yymVar,(3.0/2.0)))

			xmKurt = mm40 / (m00 * math.pow(xxmVar,2.0)) - 3.0
			ymKurt = mm04 / (m00 * math.pow(yymVar,2.0)) - 3.0

			ecm = (math.pow((mm20-mm02),2.0)+(4.0*mm11*mm11))/m00

			rt.addValue("xxcVar", xxcVar)
			rt.addValue("yycVar", yycVar)
			rt.addValue("xycVar", xycVar)

			rt.addValue("xcSkew", xcSkew)
			rt.addValue("ycSkew", ycSkew)

			rt.addValue("xcKurt", xcKurt)
			rt.addValue("ycKurt", ycKurt)

			rt.addValue("Ecc", ecc)

			rt.addValue("xxmVar", xxmVar)
			rt.addValue("yymVar", yymVar)
			rt.addValue("xymVar", xymVar)

			rt.addValue("xmSkew", xmSkew)
			rt.addValue("ymSkew", ymSkew)

			rt.addValue("xmKurt", xmKurt)
			rt.addValue("ymKurt", ymKurt)

			rt.addValue("Ecm", ecm)

			rt.addValue("roiw", rect.width)
			rt.addValue("roih", rect.height)

			rt.addValue("cellw", self.__ipw[index-1])
			rt.addValue("cellh", self.__iph[index-1])

			self.__impRes.killRoi()

			xCoord[:] = []
			yCoord[:] = []
			currentPixel[:] = []
			points = []
			points[:] = []
			npointsmax = 0
			
			#lab = self.__labels[index-1]
			nameroi = self.__dictCells[index][0]
			lab = self.__dictCells[index][1]
			
			self.__impMax.setSlice(index)
			ipmax = self.__impMax.getProcessor()
			for y in range(ipmax.getHeight()) :
				for x in range(ipmax.getWidth()) :
					if ipmax.getPixelValue(x,y) > 0 : 
						#print str(index)
						#print lab
						#print nameroi
						#print str(x)
						#print str(y)
						#print str(self.__cellsrois[index-1][0].getLength())
						#print str(self.__ipw[index-1])
						#print str(self.__iph[index-1])
						twpoints.append(str(index)+"\t"+lab+"\t"+nameroi+"\t"+str(x)+"\t"+str(y)+"\t"+str(self.__cellsrois[index-1][0].getLength())+"\t"+str(self.__ipw[index-1])+"\t"+str(self.__iph[index-1]))
						npointsmax+=1
			rt.addValue("npoints", npointsmax)

			twlabels.append(str(index)+"\t"+lab+"\t"+nameroi+"\t"+str(npointsmax))
			rt.show("RT-"+self.__name)
			
		rt.show("RT-"+self.__name)
		
	
	def __setDisplay(self, val=""): 
		self.__display.text = str(val)

	def setLabel(self, text):
		self.__label.setText(text)

	def listmean(self, l) : return float(sum(l)/len(l))

	def listmedian(self, l) :
		s=l[:]
		s.sort()
		w=len(l)
		return float(s[(w-1)/2]) if (w%2 == 1) else float((s[w/2]+s[(w/2)-1]))/2

	def __help(self, event):
		IJ.log(""" 

		--------------------------------------------------------------------------------------
		New = Starts a new process with stacked cells
		Add = Adds un ROI as a new cell in the stack (poly segments line or a closed area ROI)
		Add Roi manager = adds all the ROIs contained in the roi manager
		End = Stops the stack process and generates images and results
		--------------------------------------------------------------------------------------

		--------------------------------------------------------------------------------------
		Line width = width of the cells in pixels.
		Noise for peaks =  value passed to detect peaks function
		Fluo threshold = value of the background in the fluo image. Used for acurated calculus of moments.
		Min length = filter for small short cells
		Max length = filter for long cells
		--------------------------------------------------------------------------------------
		
		--------------------------------------------------------------------------------------
		DIA = Select the image and click to set the source image for cells ROI
		FLUO = Select the image and click to set the image containig the fluorescence signal
		(if Add Roi manager selected, this is not take in to account)
		--------------------------------------------------------------------------------------

		--------------------------------------------------------------------------------------
		Skip failed ROIs = debug option
		Generate Mosaic = Generates a vertcal image with all the stacked cells
		Mean Projection = creates the projection of all cells by mean method
		Create maxFinder = uses the maxFinder function to generate peaks information
		Apply median = smooth the streched images by a 3x3 median filter
		Apply Fire LUT = shows all images with false colors (Fire LUT)
		Auto Align = Flip the cells to align the center of mass in the left part of the images
		Auto enlarge = Stretch the cell to fit the length of the longuest cell
		Generate measures =  creates a text windows with measures parameters.
		
		""")
コード例 #18
0
ファイル: measure.py プロジェクト: julianstanley/wormAnalysis
# Make the ROIs based on the mask
IJ.setThreshold(imgMask, 1, 255, "Red")
IJ.run(imgMask, "Analyze Particles...", "size=200 exclude add stack")
roiManager.runCommand("Show None")

maskStk = imgMask.getStack()
im410Stk = img410.getStack()
im470Stk = img470.getStack()

areas = []
angles = []
xs = []
ys = []

# TODO: subtract median here?
ra = roiManager.getRoisAsArray()
for i in range(maskStk.getSize()):
	ip = im410Stk.getProcessor(i+1)
	ip.setRoi(ra[i])
	istats = ip.getStatistics()
	dataTable.setValue('Intensity410_wholePharynx', i, istats.mean)

	ip = im470Stk.getProcessor(i+1)
	ip.setRoi(ra[i])
	istats = ip.getStatistics()
	dataTable.setValue('Intensity470_wholePharynx', i, istats.mean)

	# TODO: Figure out units for Area
	dataTable.setValue('Area (Px)', i, istats.area)

	# we don't need to keep track of these in our `data` object, just need them to do the rotations
コード例 #19
0
def segmentation(imp, spot_data, channel, diameter_init, ES_tolerance, ES_area_max, ES_ctrl_pts, ES_iteration, repeat_max):
    # Open files
    cal = imp.getCalibration()
    manager = RoiManager.getInstance()
    if manager is None:
        manager = RoiManager()
    # Prepare log files for output
    options = IS.MEDIAN | IS.AREA | IS.MIN_MAX | IS.CENTROID | IS.PERIMETER | IS.ELLIPSE | IS.SKEWNESS
    convergence = []
    Sintensity = []
    for spot in spot_data:
        repeat = 0
        flag = False
        spotID = int(spot[0])
        Xcenter = (float(spot[1]) / cal.pixelWidth)
        Ycenter = (float(spot[2]) / cal.pixelHeight)
        Quality = float(spot[3])
        diameter_init = float(spot[4] / cal.pixelWidth) * 2.0
        while True:
            manager = RoiManager.getInstance()
            if manager is None:
                manager = RoiManager()
            Xcurrent = int(Xcenter - diameter_init / 2.0)
            Ycurrent = int(Ycenter - diameter_init / 2.0)
            Dcurrent1 = int(diameter_init * (1.2 - repeat / 10.0))
            Dcurrent2 = int(diameter_init * (0.8 + repeat / 10.0))
            roi = OvalRoi(Xcurrent, Ycurrent, Dcurrent1, Dcurrent2)
            imp.setPosition(channel)
            imp.setRoi(roi)
            Esnake_options1 = "target_brightness=Bright control_points=" + \
                str(ES_ctrl_pts) + " gaussian_blur=0 "
            Esnake_options2 = "energy_type=Contour alpha=2.0E-5 max_iterations=" + \
                str(ES_iteration) + " immortal=false"
            IJ.run(imp, "E-Snake", Esnake_options1 + Esnake_options2)
            roi_snake = manager.getRoisAsArray()
            roi_ind = len(roi_snake) - 1
            stats = IS.getStatistics(
                imp.getProcessor(), options, imp.getCalibration())
            perimeter = roi_snake[roi_ind].getLength() * cal.pixelWidth
            circularity = 4.0 * 3.1417 * (stats.area / (perimeter * perimeter))
            if stats.area > 17.0 and stats.area < ES_area_max and stats.skewness < -0.01 and circularity > 0.01 and stats.minor > 2.0 and boundaries(Xcenter, Ycenter, stats.xCentroid / cal.pixelWidth, stats.yCentroid / cal.pixelHeight, ES_tolerance):
                Sintensity = stats.median
                convergence.append(True)
                break
            if stats.median > 6000 and stats.area > 17.0 and stats.area < ES_area_max:
                Sintensity = stats.median
                convergence.append(True)
                break
            elif repeat > repeat_max:
                manager.select(imp, roi_ind)
                manager.runCommand(imp, 'Delete')
                roi = OvalRoi(Xcenter + 1.0 - diameter_init / 2.0, Ycenter +
                              1.0 - diameter_init / 2.0, diameter_init, diameter_init)
                imp.setRoi(roi)
                manager.add(imp, roi, spotID)
                roi_snake.append(roi)
                stats = IS.getStatistics(
                    imp.getProcessor(), options, imp.getCalibration())
                Sintensity = stats.median
                convergence.append(False)
                break
            else:
                IJ.log('Area=' + str(stats.area) + '  Skewness=' + str(stats.skewness) +
                       ' circularity=' + str(circularity) + ' Minor=' + str(stats.minor))
                manager.select(imp, roi_ind)
                manager.runCommand(imp, 'Delete')
                repeat += 1
        # End Spot-segmentation
    # End all Spots-segmentation
    manager.runCommand(imp, 'Show All')
    imp.setPosition(channel)
    color = imp.createImagePlus()
    ip = imp.getProcessor().duplicate()
    color.setProcessor("segmentation" + str(channel), ip)
    color.show()
    IJ.selectWindow("segmentation" + str(channel))
    manager.moveRoisToOverlay(color)
    spot_optimal = manager.getRoisAsArray()
    manager.reset()
    for i in xrange(0, len(spot_optimal)):
        spot = spot_optimal[i]
        spot.setStrokeWidth(2)
        if convergence[i]:
            spot.setStrokeColor(Color.GREEN)
        else:
            spot.setStrokeColor(Color.MAGENTA)
        imp.setRoi(spot)
        manager.add(imp, spot, i)
    manager.runCommand(imp, 'Show All')
    imp.setPosition(channel)
コード例 #20
0
def batch_open_Rois(pathRoi,
                    file_typeRoi=None,
                    name_filterRoi=None,
                    recursive=False):
    '''Open all files in the given folder.
    :param path: The path from were to open the Rois. String and java.io.File are allowed.
    :param file_type: Only accept files with the given extension (default: None).
    :param name_filter: Reject files that contain the given string (default: wild characters).
    :param recursive: Process directories recursively (default: False).
    '''
    # Converting a File object to a string.
    if isinstance(pathRoi, File):
        pathRoi = pathRoi.getAbsolutePath()

    def check_type(string):
        '''This function is used to check the file type.
        It is possible to use a single string or a list/tuple of strings as filter.
        This function can access the variables of the surrounding function.
        :param string: The filename to perform the check on.
        '''
        if file_typeRoi:
            # The first branch is used if file_type is a list or a tuple.
            if isinstance(file_typeRoi, (list, tuple)):
                for file_type_ in file_typeRoi:
                    if string.endswith(file_type_):
                        # Exit the function with True.
                        return True
                    else:
                        # Next iteration of the for loop.
                        continue
            # The second branch is used if file_type is a string.
            elif isinstance(file_typeRoi, string):
                if string.endswith(file_typeRoi):
                    return True
                else:
                    return False
            return False
        # Accept all files if file_type is None.
        else:
            return True

    # We collect all files to open in a list.
    path_to_Roi = []
    # Replacing some abbreviations (e.g. $HOME on Linux).
    path = os.path.expanduser(pathRoi)
    # If we don't want a recursive search, we can use os.listdir().
    if not recursive:
        for file_name in os.listdir(pathRoi):
            full_path = os.path.join(pathRoi, file_name)
            if os.path.isfile(full_path):
                if check_type(file_name):
                    path_to_Roi.append(full_path)
    # For a recursive search os.walk() is used.
    else:
        # os.walk() is iterable.
        # Each iteration of the for loop processes a different directory.
        # the first return value represents the current directory.
        # The second return value is a list of included directories.
        # The third return value is a list of included files.
        for directory, dir_names, file_names in os.walk(pathRoi):
            # We are only interested in files.
            for file_name in file_names:
                # The list contains only the file names.
                # The full path needs to be reconstructed.
                full_path = os.path.join(directory, file_name)
                # Both checks are performed to filter the files.
                if check_type(file_name):
                    # Add the file to the list of Rois to open.
                    path_to_Roi.append([
                        full_path,
                        os.path.basename(os.path.splitext(full_path)[0])
                    ])

    # Create the list that will be returned by this function.
    RoisX = []
    RoisY = []
    print('path', path_to_Roi)
    for roi_path in path_to_Roi:

        print('path', roi_path)
        # An object equals True and None equals False.
        rm = RoiManager.getInstance()
        if (rm == None):
            rm = RoiManager()
        Roi = IJ.open(roi_path)
        roi_points = rm.getRoisAsArray()

    table = ResultsTable()

    for Roi in roi_points:

        xpoints = Roi.getPolygon().xpoints
        ypoints = Roi.getPolygon().ypoints
    for i in range(len(xpoints)):
        table.incrementCounter()
        table.addValue("Index", i)
        table.addValue("X", xpoints[i])
        table.addValue("Y", ypoints[i])
    table.show("XY-Coordinates")

    return roi_points
コード例 #21
0
reffn = odref.getFileName()

if reffn is None:
    print "User canceled the dialog!"
else:
    refdir = odref.getDirectory()
    refpath = os.path.join(refdir, reffn)

refImp = IJ.openImage(refpath)
width = refImp.width  
height = refImp.height  

roim = RoiManager()
roim.runCommand("open", roipath)

roiArray = roim.getRoisAsArray()
nRoi = len(roiArray)
roim.close()

bwStack = ImageStack(width, height, nRoi)
for i in xrange(1, nRoi+1):
    bwStack.setProcessor(FloatProcessor(width, height, zeros('f', width * height), None), i)

for i in xrange(1, nRoi+1):
    roi = roiArray[i-1]
    fp = bwStack.getProcessor(i)
    fp.setValue(1.0)
    fp.fill(roi)

roiImp = ImagePlus("roi", bwStack)
コード例 #22
0
ファイル: RoiSelection.py プロジェクト: jmil/MPI_Fiji_Scripts
from operator import itemgetter, attrgetter
from ij.gui import PolygonRoi, Roi
true=1
false=0
IJ.run("Invert", "stack");
IJ.run("Fill Holes", "stack");
IJ.run("Create Selection");
rm = RoiManager()
rm.runCommand("add")
rm.runCommand("split")
#number_selected=rm.getCount()
IJ.run("Select None");
rm.runCommand("deselect")
#rm.select(0)
#print number_selected
roi_array=rm.getRoisAsArray()
max_roi=None
max_points=-1

for roi in roi_array:
  polygon=roi.getPolygon()
  if polygon is not None:
    number_of_points = polygon.npoints
    if max_points < number_of_points:
      max_points=number_of_points
      max_roi=roi
#print max_points
#sorted_roi_array=sorted(roi_array, key=methodcaller('getLength'), reverse=True)
#length_array=[]
#index=0
#for roi in roi_array:
コード例 #23
0
def process(subFolder, outputDirectory, filename):
    #IJ.close()
    imp = IJ.openImage(inputDirectory + subFolder + '/' +
                       rreplace(filename, "_ch00.tif", ".tif"))
    imp.show()

    # Get the pixel values from the xml file
    for file in os.listdir(inputDirectory + subFolder):
        if file.endswith('.xml'):
            xml = os.path.join(inputDirectory + subFolder, file)
            xml = "C:/Users/Harris/Desktop/test_xml_for_parsing_pixel.xml"
            element_tree = ET.parse(xml)
            root = element_tree.getroot()
            for dimensions in root.iter('DimensionDescription'):
                num_pixels = int(dimensions.attrib['NumberOfElements'])
                if dimensions.attrib['Unit'] == "m":
                    length = float(dimensions.attrib['Length']) * 1000000
                else:
                    length = float(dimensions.attrib['Length'])
            pixel_length = length / num_pixels
        else:
            pixel_length = 0.8777017

    IJ.run(
        imp, "Properties...",
        "channels=1 slices=1 frames=1 unit=um pixel_width=" +
        str(pixel_length) + " pixel_height=" + str(pixel_length) +
        " voxel_depth=25400.0508001")
    ic = ImageConverter(imp)
    ic.convertToGray8()
    #IJ.setThreshold(imp, 2, 255)

    #Automatically selects the area of the organoid based on automated thresholding and creates a mask to be applied on
    #all other images

    IJ.setAutoThreshold(imp, "Mean dark no-reset")
    IJ.run(imp, "Convert to Mask", "")
    IJ.run(imp, "Analyze Particles...", "size=100000-Infinity add select")
    rm = RoiManager.getInstance()
    num_roi = rm.getCount()

    for i in num_roi:

        imp = getCurrentImage()
        rm.select(imp, i)
        IJ.setBackgroundColor(0, 0, 0)
        IJ.run(imp, "Clear Outside", "")

        IJ.run(imp, "Convert to Mask", "")
        IJ.run(imp, "Remove Outliers...",
               "radius=5" + " threshold=50" + " which=Dark")
        IJ.run(imp, "Remove Outliers...",
               "radius=5" + " threshold=50" + " which=Bright")

        # Save the mask and open it
        IJ.saveAs("tiff", inputDirectory + '/mask' + i)
        mask = IJ.openImage(inputDirectory + '/mask' + i + '.tif')

        if not displayImages:
            imp.changes = False
            imp.close()

        images = [None] * 5
        intensities = [None] * 5
        blobsarea = [None] * 5
        blobsnuclei = [None] * 5
        bigAreas = [None] * 5

        imp.close()

        # Loop to open all the channel images
        for chan in channels:
            v, x = chan
            images[x] = IJ.openImage(inputDirectory + subFolder + '/' +
                                     rreplace(filename, "_ch00.tif", "_ch0" +
                                              str(x) + ".tif"))

            # Apply Mask on all the images and save them into an array
            apply_mask = ImageCalculator()
            images[x] = apply_mask.run("Multiply create 32 bit", mask,
                                       images[x])
            ic = ImageConverter(images[x])
            ic.convertToGray8()
            imp = images[x]

            # Calculate the intensities for each channel as well as the organoid area
            for roi in rm.getRoisAsArray():
                imp.setRoi(roi)
                stats_i = imp.getStatistics(Measurements.MEAN
                                            | Measurements.AREA)
                intensities[x] = stats_i.mean
                bigAreas[x] = stats_i.area

        rm.close()

        # Opens the ch00 image and sets default properties

        #Get the pixel values from the xml file
        for file in os.listdir(subFolder):
            if file.endswith('.xml'):
                xml = os.path.join(inputDirectory + subFolder, file)
                xml = "C:/Users/Harris/Desktop/test_xml_for_parsing_pixel.xml"
                element_tree = ET.parse(xml)
                root = element_tree.getroot()
                for dimensions in root.iter('DimensionDescription'):
                    num_pixels = int(dimensions.attrib['NumberOfElements'])
                    if dimensions.attrib['Unit'] == "m":
                        length = float(dimensions.attrib['Length']) * 1000000
                    else:
                        length = float(dimensions.attrib['Length'])
                pixel_length = length / num_pixels
            else:
                pixel_length = 0.8777017

        imp = IJ.openImage(inputDirectory + subFolder + '/' + filename)
        imp = apply_mask.run("Multiply create 32 bit", mask, imp)
        IJ.run(
            imp, "Properties...",
            "channels=1 slices=1 frames=1 unit=um pixel_width=" +
            str(pixel_length) + "pixel_height=" + str(pixel_length) +
            "voxel_depth=25400.0508001")

        # Sets the threshold and watersheds. for more details on image processing, see https://imagej.nih.gov/ij/developer/api/ij/process/ImageProcessor.html

        ic = ImageConverter(imp)
        ic.convertToGray8()

        IJ.run(imp, "Remove Outliers...",
               "radius=2" + " threshold=50" + " which=Dark")

        IJ.run(imp, "Gaussian Blur...", "sigma=" + str(blur))

        IJ.setThreshold(imp, lowerBounds[0], 255)

        if displayImages:
            imp.show()
        IJ.run(imp, "Convert to Mask", "")
        IJ.run(imp, "Watershed", "")

        if not displayImages:
            imp.changes = False
            imp.close()

        # Counts and measures the area of particles and adds them to a table called areas. Also adds them to the ROI manager

        table = ResultsTable()
        roim = RoiManager(True)
        ParticleAnalyzer.setRoiManager(roim)
        pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER,
                              Measurements.AREA, table, 15, 9999999999999999,
                              0.2, 1.0)
        pa.setHideOutputImage(True)
        # imp = impM

        # imp.getProcessor().invert()
        pa.analyze(imp)

        areas = table.getColumn(0)

        # This loop goes through the remaining channels for the other markers, by replacing the ch00 at the end with its corresponding channel
        # It will save all the area fractions into a 2d array called areaFractionsArray

        areaFractionsArray = [None] * 5
        for chan in channels:
            v, x = chan
            # Opens each image and thresholds

            imp = images[x]
            IJ.run(
                imp, "Properties...",
                "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001"
            )

            ic = ImageConverter(imp)
            ic.convertToGray8()
            IJ.setThreshold(imp, lowerBounds[x], 255)

            if displayImages:
                imp.show()
                WaitForUserDialog("Title",
                                  "Adjust Threshold for Marker " + v).show()

            IJ.run(imp, "Convert to Mask", "")

            # Measures the area fraction of the new image for each ROI from the ROI manager.
            areaFractions = []
            for roi in roim.getRoisAsArray():
                imp.setRoi(roi)
                stats = imp.getStatistics(Measurements.AREA_FRACTION)
                areaFractions.append(stats.areaFraction)

            # Saves the results in areaFractionArray

            areaFractionsArray[x] = areaFractions

        roim.close()

        for chan in channels:
            v, x = chan

            imp = images[x]
            imp.deleteRoi()
            roim = RoiManager(True)
            ParticleAnalyzer.setRoiManager(roim)
            pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER,
                                  Measurements.AREA, table, 15,
                                  9999999999999999, 0.2, 1.0)
            pa.analyze(imp)

            blobs = []
            for roi in roim.getRoisAsArray():
                imp.setRoi(roi)
                stats = imp.getStatistics(Measurements.AREA)
                blobs.append(stats.area)

            blobsarea[x] = sum(
                blobs
            )  #take this out and use intial mask tissue area from the beginning
            blobsnuclei[x] = len(blobs)

            if not displayImages:
                imp.changes = False
                imp.close()
            roim.reset()
            roim.close()

            imp.close()

    # Creates the summary dictionary which will correspond to a single row in the output csv, with each key being a column

    summary = {}

    summary['Image'] = filename
    summary['Directory'] = subFolder

    # Adds usual columns

    summary['size-average'] = 0
    summary['#nuclei'] = 0
    summary['all-negative'] = 0

    summary['too-big-(>' + str(tooBigThreshold) + ')'] = 0
    summary['too-small-(<' + str(tooSmallThreshold) + ')'] = 0

    # Creates the fieldnames variable needed to create the csv file at the end.

    fieldnames = [
        'Name', 'Directory', 'Image', 'size-average',
        'too-big-(>' + str(tooBigThreshold) + ')',
        'too-small-(<' + str(tooSmallThreshold) + ')', '#nuclei',
        'all-negative'
    ]

    # Adds the columns for each individual marker (ignoring Dapi since it was used to count nuclei)

    summary["organoid-area"] = bigAreas[x]
    fieldnames.append("organoid-area")

    for chan in channels:
        v, x = chan
        summary[v + "-positive"] = 0
        fieldnames.append(v + "-positive")

        summary[v + "-intensity"] = intensities[x]
        fieldnames.append(v + "-intensity")

        summary[v + "-blobsarea"] = blobsarea[x]
        fieldnames.append(v + "-blobsarea")

        summary[v + "-blobsnuclei"] = blobsnuclei[x]
        fieldnames.append(v + "-blobsnuclei")

    # Adds the column for colocalization between first and second marker

    if len(channels) > 2:
        summary[channels[1][0] + '-' + channels[2][0] + '-positive'] = 0
        fieldnames.append(channels[1][0] + '-' + channels[2][0] + '-positive')

    # Adds the columns for colocalization between all three markers

    if len(channels) > 3:
        summary[channels[1][0] + '-' + channels[3][0] + '-positive'] = 0
        summary[channels[2][0] + '-' + channels[3][0] + '-positive'] = 0
        summary[channels[1][0] + '-' + channels[2][0] + '-' + channels[3][0] +
                '-positive'] = 0

        fieldnames.append(channels[1][0] + '-' + channels[3][0] + '-positive')
        fieldnames.append(channels[2][0] + '-' + channels[3][0] + '-positive')
        fieldnames.append(channels[1][0] + '-' + channels[2][0] + '-' +
                          channels[3][0] + '-positive')

    # Loops through each particle and adds it to each field that it is True for.

    areaCounter = 0
    for z, area in enumerate(areas):

        log.write(str(area))
        log.write("\n")

        if area > tooBigThreshold:
            summary['too-big-(>' + str(tooBigThreshold) + ')'] += 1
        elif area < tooSmallThreshold:
            summary['too-small-(<' + str(tooSmallThreshold) + ')'] += 1
        else:

            summary['#nuclei'] += 1
            areaCounter += area

            temp = 0
            for chan in channels:
                v, x = chan
                if areaFractionsArray[x][z] > areaFractionThreshold[
                        0]:  # theres an error here im not sure why. i remember fixing it before
                    summary[chan[0] + '-positive'] += 1
                    if x != 0:
                        temp += 1

            if temp == 0:
                summary['all-negative'] += 1

            if len(channels) > 2:
                if areaFractionsArray[1][z] > areaFractionThreshold[1]:
                    if areaFractionsArray[2][z] > areaFractionThreshold[2]:
                        summary[channels[1][0] + '-' + channels[2][0] +
                                '-positive'] += 1

            if len(channels) > 3:
                if areaFractionsArray[1][z] > areaFractionThreshold[1]:
                    if areaFractionsArray[3][z] > areaFractionThreshold[3]:
                        summary[channels[1][0] + '-' + channels[3][0] +
                                '-positive'] += 1
                if areaFractionsArray[2][z] > areaFractionThreshold[2]:
                    if areaFractionsArray[3][z] > areaFractionThreshold[3]:
                        summary[channels[2][0] + '-' + channels[3][0] +
                                '-positive'] += 1
                        if areaFractionsArray[1][z] > areaFractionThreshold[1]:
                            summary[channels[1][0] + '-' + channels[2][0] +
                                    '-' + channels[3][0] + '-positive'] += 1

    # Calculate the average of the particles sizes

    if float(summary['#nuclei']) > 0:
        summary['size-average'] = round(areaCounter / summary['#nuclei'], 2)

    # Opens and appends one line on the final csv file for the subfolder (remember that this is still inside the loop that goes through each image)

    with open(outputDirectory + "/" + outputName + ".csv", 'a') as csvfile:

        writer = csv.DictWriter(csvfile,
                                fieldnames=fieldnames,
                                extrasaction='ignore',
                                lineterminator='\n')
        if os.path.getsize(outputDirectory + "/" + outputName + ".csv") < 1:
            writer.writeheader()
        writer.writerow(summary)

    IJ.run(imp, "Close All", "")
コード例 #24
0
ファイル: Myxo_Track.py プロジェクト: leec13/MorphoBactPy
IJ.log("-------start at "+now+"  ------")


#for cell in listfilescells :
f1 = open(rootdir+now+"-R1-MT.txt", "w")
tab="\t"
f1.write("cell"+tab+"maxFrames"+tab+"maxcumul"+tab+"nrevs"+"\n")

for cle in listcellname :
	rm.runCommand("reset")
	#cle = cell.rsplit("/", 1)[1][:-len(".cell")]
	#cles.append(cle)
	rm.runCommand("Open", dictRois[cle])
	rm.runCommand("Show None")
	RawroisArray=rm.getRoisAsArray()
	if len(RawroisArray)< minLife : continue
	roisArray=[RawroisArray[i] for i in range(0,len(RawroisArray), subs)]
	IJ.showStatus(cle)
	IJ.showProgress(listcellname.index(cle), len(listcellname)) 

	dxA=[]
	dyA=[]
	dxB=[]
	dyB=[]
	dA=[]
	dB=[]

	sensA = 1
	sensB = -1
	nrev = 0
コード例 #25
0
ファイル: roi.to.mask_.py プロジェクト: rmd13/lab-program
reffn = odref.getFileName()

if reffn is None:
    print "User canceled the dialog!"
else:
    refdir = odref.getDirectory()
    refpath = os.path.join(refdir, reffn)

refImp = IJ.openImage(refpath)
width = refImp.width
height = refImp.height

roim = RoiManager()
roim.runCommand("open", roipath)

roiArray = roim.getRoisAsArray()
nRoi = len(roiArray)
roim.close()

bwStack = ImageStack(width, height, nRoi)
for i in xrange(1, nRoi + 1):
    bwStack.setProcessor(
        FloatProcessor(width, height, zeros('f', width * height), None), i)

for i in xrange(1, nRoi + 1):
    roi = roiArray[i - 1]
    fp = bwStack.getProcessor(i)
    fp.setValue(1.0)
    fp.fill(roi)

roiImp = ImagePlus("roi", bwStack)
コード例 #26
0
from ij.plugin.frame import RoiManager
from ij.plugin.filter import ParticleAnalyzer
from ij import IJ

# get active image
imp=IJ.getImage()

# set up first ROI manager
table1 = ResultsTable()
roim1=RoiManager()
pa1 = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA|Measurements.MEAN|Measurements.ELLIPSE, table1, 0, 100, 0, 1)
pa1.setRoiManager(roim1)
pa1.analyze(imp)

# set up second ROI manager
table2 = ResultsTable()
# Pass true to second ROI manager so it will not be seen
roim2=RoiManager(True)
pa2 = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA|Measurements.MEAN|Measurements.ELLIPSE, table2, 100, 500, 0, 1)
pa2.setRoiManager(roim2)
pa2.analyze(imp)

print "rois from first manager:"
for roi in roim1.getRoisAsArray(): print roi

print 
print "rois from second manager:"
for roi in roim2.getRoisAsArray(): print roi


コード例 #27
0
	def __calRois(self, imp, indice) :									
		"""
		Returns the ROIs of a slice given (identified with its n°) in a stack
		"""
		##imp=self.__dictImages[nameimages]							 		# IL FAUT RÉCUPÉRER L'IMAGE DU STACK !!!!!
		#if self.__batch : imp.hide()
		#else : imp.show()
		#imp.hide()
		imp.show()
		if self.__batch : imp.hide()
		imp.setSlice(indice)
		imp.killRoi()
		ip = imp.getProcessor()

		bs=BackgroundSubtracter() 

		#if str(self.__subback) == "0" or str(self.__subback) == "1" : self.__subback = bool(int(self.__subback))
		#if self.__subback == True : IJ.run(imp, "Subtract Background...", "rolling="+str(self.__radius)+" light")
		if self.__subback == True : bs.rollingBallBackground(ip, self.__radius, False, True, False, True, False)

		if self.__runmacro :
			imp.show()
			imp.setSlice(indice)
			imp.updateAndDraw()
			IJ.runMacroFile(self.__macropath, imp.getTitle())
		
		
			
		imp.updateAndDraw()
		
		#if str(self.__manthresh) == "0" or str(self.__manthresh) == "1" : self.__manthresh = bool(int(self.__manthresh))
		
		#if self.__manthresh : IJ.setThreshold(imp, self.__minthr, self.__maxthr)
		if self.__manthresh : 
			ip.setThreshold(self.__minthr, self.__maxthr, ImageProcessor.RED_LUT)
		else : self.__setThreshold(imp, indice)
		
		rt=ResultsTable()
		pa1=ParticleAnalyzer(ParticleAnalyzer.SHOW_MASKS+ParticleAnalyzer.EXCLUDE_EDGE_PARTICLES , Measurements.AREA, rt, self.__minArea, self.__maxArea, self.__minCirc, self.__maxCirc)
		pa1.setHideOutputImage(True) 
		pa1.analyze(imp)
		
		masks=pa1.getOutputImage()
		masks.getProcessor().erode()
		masks.getProcessor().dilate()
		masks.getProcessor().invertLut()
		masks.getProcessor().threshold(1)
		
		rm = RoiManager.getInstance()
		if (rm==None): rm = RoiManager()
		rm.runCommand("reset")
		#rm.hide()
		
		pa2=ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER+ParticleAnalyzer.CLEAR_WORKSHEET+ParticleAnalyzer.EXCLUDE_EDGE_PARTICLES , Measurements.AREA, rt, self.__minArea, self.__maxArea, self.__minCirc, self.__maxCirc) 
		pa2.analyze(masks)
		masks.close()
		
		temparray=rm.getRoisAsArray()
		for r in temparray :
			tempnameroi=r.getName()
			r.setPosition(indice)
			r.setName(str(indice)+"-"+tempnameroi)
			r.setStrokeWidth(1) 
		
		if len(self.__params) > 0 :
			for k in self.__params:
				#if k[0]=="Area": self.__minArea, self.__maxArea = str(k[1]), str(k[2])
				if k[0]=="Area": self.__minArea, self.__maxArea = k[1], k[2]
			for k in self.__params:
				#if k[0]=="Circ": self.__minCirc, self.__maxCirc = str(k[1]), str(k[2])
				if (k[0]=="Circ") and k[3] : self.__minCirc, self.__maxCirc = k[1], k[2]
				else : self.__minCirc, self.__maxCirc = 0, 1
			self.__rr.setRoisarray(temparray, imp)
			self.__rr.setRange(indice, self.__params)
			return self.__rr.includeRois
		else : return temparray
コード例 #28
0
ファイル: CellsSelection.py プロジェクト: leec13/MorphoBactPy
class CellsSelection(swing.JFrame):
	def __init__(self): 
		swing.JFrame.__init__(self, title="Cells Selection")
		self.setFont(awt.Font("Courrier", 1, 10))
		self.__dictBox = {}
		self.__dictFiles = {}
		self.oked = False
		self.__mem=[]
		self.setDefaultCloseOperation(swing.JFrame.DISPOSE_ON_CLOSE) 
		
	def run(self, cells, path) :
		
		self.__cells=cells
		cells.sort()
		self.__cells.sort()
		self.__path=path
	
		if len(cells) <= 6 :
			cols=len(cells)
			rows=1
		else :
			cols=6
			rows=int(len(cells)/6)+1

		#print "cols", cols, "rows", rows
		self.setFont(awt.Font("Courrier", 1, 10))
		#self.size=(max(200*cols, 1100), max(70*rows, 300))
		self.size=(max(150*cols, 800), max(50*rows, 250))
		line = BorderFactory.createEtchedBorder(EtchedBorder.LOWERED)
			
		self.contentPane.layout = awt.BorderLayout()
		self.__display = swing.JTextField(preferredSize=(400, 30), horizontalAlignment=swing.SwingConstants.LEFT)
		self.__setDisplay()

		northpanel=swing.JPanel(awt.FlowLayout(awt.FlowLayout.LEFT))
		northpanel.setBorder(line)
		#northpanel.add(self.__display, awt.BorderLayout.NORTH)
		northpanel.add(self.__display)
		selectall = swing.JButton("select ALL", size=(100, 70), actionPerformed=self.__selectall)
		#northpanel.add(selectall, awt.BorderLayout.WEST)
		northpanel.add(selectall)
		selectnone = swing.JButton("select NONE", size=(100, 70), actionPerformed=self.__selectnone)
		#northpanel.add(selectnone, awt.BorderLayout.EAST)
		northpanel.add(selectnone)
		mem = swing.JButton("Memorize", size=(100, 70), actionPerformed= self.__memorize)
		northpanel.add(mem)
		recall = swing.JButton("Recall", size=(100, 70), actionPerformed=self.__recall)
		northpanel.add(recall)
		
		southpanel=swing.JPanel(awt.FlowLayout(awt.FlowLayout.RIGHT))
		southpanel.setBorder(line)
		self.__label=swing.JLabel("validate selection with ok")
		southpanel.add(self.__label)
		ok = swing.JButton("ok", size=(100, 70), actionPerformed=self.__ok)
		southpanel.add(ok)
		close = swing.JButton("close", size=(100, 70), actionPerformed=self.__close)
		southpanel.add(close)
		
		westpanel=swing.JPanel(awt.FlowLayout(awt.FlowLayout.CENTER), preferredSize=(150, 200))
		westpanel.setBorder(line)
		
		show = swing.JButton("show overlay", size=(100, 70), actionPerformed=self.__show)
		westpanel.add(show)
		hide = swing.JButton("hide overlay", size=(100, 70), actionPerformed=self.__hide)
		westpanel.add(hide)
		allframes = swing.JButton("show all", size=(100, 70), actionPerformed=self.__showall)
		westpanel.add(allframes)
		oneframe = swing.JButton("show one frame", size=(100, 70), actionPerformed=self.__showone)
		westpanel.add(oneframe)
		reset = swing.JButton("reset", size=(100, 70), actionPerformed=self.__reset)
		westpanel.add(reset)

		title = BorderFactory.createTitledBorder("Edit Cells")
		title.setTitleJustification(TitledBorder.CENTER)

		eastpanel = swing.JPanel(awt.FlowLayout(awt.FlowLayout.CENTER), preferredSize=(130, 200))
		eastpanel.setBorder(title)
		split = swing.JButton("split", size=(100, 70), actionPerformed=self.__split)
		eastpanel.add(split)
		
		grid = awt.GridLayout()
		grid.setRows(rows)
		checkpanel=swing.JPanel(grid)
		checkpanel.setFont(awt.Font("Courrier", 1, 10))
		self.__boxes=[swing.JCheckBox(actionPerformed=self.__boxaction) for i in range(len(cells))]
		for b in self.__boxes : b.setFont(awt.Font("Courrier", 1, 10))
		#self.__mem=[True for i in range(len(cells))]
		
		for i in range(len(self.__boxes)) : 
			self.__dictBox[cells[i]]=(cells[i], self.__boxes[i])
			
		for i in range(len(self.__boxes)) :
			self.__boxes[i].setText(str(cells[i]))
			self.__boxes[i].setSelected(True)
			checkpanel.add(self.__boxes[i])
		for i in range(rows*cols-len(self.__boxes)) : checkpanel.add(awt.Label(""))
		
		self.contentPane.add(northpanel, awt.BorderLayout.NORTH)
		self.contentPane.add(checkpanel, awt.BorderLayout.CENTER)
		self.contentPane.add(westpanel, awt.BorderLayout.WEST)
		self.contentPane.add(eastpanel, awt.BorderLayout.EAST)
		self.contentPane.add(southpanel, awt.BorderLayout.SOUTH)
		self.contentPane.setFont(awt.Font("Courrier", 1, 10))

		self.__rm = RoiManager.getInstance()
		if (self.__rm==None): self.__rm = RoiManager()
		self.__rm.runCommand("reset")
		
		listfilescells=[]
		listfilescells.extend(glob.glob(path+"*.zip"))


		#includecells = [filename for filename in listfilescells if filename.rsplit("/",1)[1][0:-4] in cells]
		includecells = [filename for filename in listfilescells if os.path.splitext(os.path.split(filename)[1])[0] in cells]
		
		for cell in includecells : 
			#c = cell.rsplit("/",1)[1][0:-4]
			c=os.path.splitext(os.path.split(cell)[1])[0]
			self.__dictFiles[c] = (c, cell)
		
		#for i in range(len(cells)) : 
		#	f=listfilescells[i].rsplit("/",1)[1][0:-4]
		#	#print "f=", f
		#	for c in cells :
		#		#print "c=", c, "f=", f
		#		if f==c :
		#			self.__dictFiles[c] = (c, listfilescells[i])
		#			#print "CS dictFiles", c, listfilescells[i]

	
	def __selectall(self, event): 
		for b in self.__boxes : b.setSelected(True)
		
	def __selectnone(self, event): 
		for b in self.__boxes : b.setSelected(False)

	def __ok(self, event): 
		self.oked = True
		#self.dispose()

	def __close(self, event):
		self.oked = True
		time.sleep(0.01) 
		self.dispose()

	def __memorize(self, event):
		self.__mem[:]=[]
		for i in range(len(self.__boxes)) : 
			if self.__boxes[i].isSelected() : 
				#print i, "mem", self.__boxes[i].text
				self.__mem.append(True)
			else : self.__mem.append(False)

	def __recall(self, event):
		for i in range(len(self.__boxes)) : 
			if self.__mem[i] : 
				self.__boxes[i].setSelected(True)
			else : self.__boxes[i].setSelected(False)

	def __show(self, event):
		IJ.run("Show Overlay", "")

	def __hide(self, event):
		IJ.run("Hide Overlay", "")

	def __showall(self, event) :
		self.__rm.runCommand("Associate", "false")
		self.__rm.runCommand("Show All")

	def __showone(self, event) : 
		self.__rm.runCommand("Associate", "true")
		self.__rm.runCommand("Show All")

	def __reset(self, event) : 
		self.__rm.runCommand("reset")
		
	def __boxaction(self, event):
		self.__setDisplay(str(event.getSource().text)+" is "+str(event.getSource().isSelected()))
		
		if event.getSource().isSelected() :  #print self.__dictFiles[event.getSource().text][1]
			#self.__rm.runCommand("reset")
			
			self.__rm.runCommand("Open", self.__dictFiles[event.getSource().text][1])
		
		
		
	def __setDisplay(self, val=""): 
		self.__display.text = str(val)

	def __split(self, event) : 
		sel = self.getSelected()
		if len(sel) != 1 : 
			IJ.showMessage("only one cell should be selected !")
			return
		else : 
			cellname = sel[0]
			rois = self.__rm.getRoisAsArray()
			self.__rm.runCommand("reset")
			n = int(IJ.getNumber("slice to split ?", 1))
			for i in range(n) : 
				self.__rm.addRoi(rois[i])
			#print self.__path+cellname+"-a.zip"
			self.__rm.runCommand("Save", self.__path+cellname+"-a.zip")
			self.__rm.runCommand("reset")
			for i in range(n, len(rois)) : 
				self.__rm.addRoi(rois[i])
			self.__rm.runCommand("Save", self.__path+cellname+"-b.zip")
			self.__rm.runCommand("reset")

		root = self.__path.rsplit(os.path.sep, 2)[0]+os.path.sep
		
		if not path.exists(root+"Cells"+os.path.sep) :os.makedirs(root+"Cells"+os.path.sep, mode=0777)

		fichiertemp = open(root+"Cells"+os.path.sep+cellname+"-a.cell","w")
		fichiertemp.write("NAMECELL="+cellname+"-a\n")
		fichiertemp.write("PATHCELL="+root+"Cells"+os.path.sep+cellname+"-a.cell\n")
		fichiertemp.write("PATHROIS="+root+"ROIs"+os.path.sep+cellname+"-a.zip\n")
		fichiertemp.write("NSLICES="+str(len(rois))+"\n")
		fichiertemp.write("SLICEINIT="+str(1)+"\n")
		fichiertemp.write("SLICEEND="+str(n)+"\n")
		r = random.randrange(5,205,1)
		g = random.randrange(10,210,1)
		b = random.randrange(30,230,1)
		fichiertemp.write("COLOR="+str(r)+";"+str(g)+";"+str(b)+"\n")
		fichiertemp.close()

		fichiertemp = open(root+"Cells"+os.path.sep+cellname+"-b.cell","w")
		fichiertemp.write("NAMECELL="+cellname+"-b\n")
		fichiertemp.write("PATHCELL="+root+"Cells"+os.path.sep+cellname+"-b.cell\n")
		fichiertemp.write("PATHROIS="+root+"ROIs"+os.path.sep+cellname+"-b.zip\n")
		fichiertemp.write("NSLICES="+str(len(rois))+"\n")
		fichiertemp.write("SLICEINIT="+str(n+1)+"\n")
		fichiertemp.write("SLICEEND="+str(len(rois))+"\n")
		r = random.randrange(5,205,1)
		g = random.randrange(10,210,1)
		b = random.randrange(30,230,1)
		fichiertemp.write("COLOR="+str(r)+";"+str(g)+";"+str(b)+"\n")
		fichiertemp.close()

		
	def getSelected(self) :
		#selected=[self.__cells[i] for i in range(len(self.__cells)) if self.__boxes[i].isSelected()]
		selected=[b.getText() for b in self.__boxes if b.isSelected()]
		return selected

	def setSelected(self, selected) :
		for b in self.__boxes : b.setSelected(False)
		#for s in selected : print str(s)
		for c in self.__cells : 
			#print str(c)
			if c in selected :
				self.__dictBox[c][1].setSelected(True)

	def resetok(self): 
		self.oked = False

	def setLabel(self, text):
		self.__label.setText(text)
コード例 #29
0
def main():

    # Get active dataset
    #img = IJ.getImage()
    display = displayservice.getActiveDisplay()
    active_dataset = imagedisplayservice.getActiveDataset(display)

    if not active_dataset:
        IJ.showMessage('No image opened.')
        return

    # Get image path
    fname = active_dataset.getSource()
    dir_path = os.path.dirname(fname)

    if not fname:
        IJ.showMessage('Source image needs to match a file on the system.')
        return

    # Open ROIs
    rois = RoiManager.getInstance()
    if not rois:
        roi_path = os.path.join(dir_path, "RoiSet.zip")
        if not os.path.isfile(roi_path):
            try:
                roi_path = glob.glob(os.path.join(dir_path, "*.roi"))[0]
            except:
                roi_path = None

        if not roi_path:
            IJ.showMessage('No ROIs. Please use Analyze > Tools > ROI Manager...')
            return

        rois = RoiManager(True)
        rois.reset()
        rois.runCommand("Open", roi_path)

    IJ.log('Image filename is %s' % fname)
    dt = get_dt(active_dataset)

    rois_array = rois.getRoisAsArray()
    for i, roi in enumerate(rois_array):

        crop_id = i + 1
        IJ.log("Croping %i / %i" % (crop_id, len(rois_array)))

        # Get filename and basename of the current cropped image
        crop_basename = "crop%i_%s" % (crop_id, active_dataset.getName())
        crop_basename = os.path.splitext(crop_basename)[0] + ".ome.tif"
        crop_fname = os.path.join(os.path.dirname(fname), crop_basename)

        # Get bounds and crop
        bounds = roi.getBounds()
        dataset = crop(ij, datasetservice, active_dataset,
                       bounds.x, bounds.y, bounds.width,
                       bounds.height, crop_basename)

        # Show cropped image
        ij.ui().show(dataset.getName(), dataset)

        # Save cropped image (ugly hack)
        IJ.log("Saving crop to %s" % crop_fname)

        imp = IJ.getImage()
        bfExporter = LociExporter()
        macroOpts = "save=[" + crop_fname + "]"
        bfExporter.setup(None, imp)
        Macro.setOptions(macroOpts)
        bfExporter.run(None)

        imp.close()

    IJ.log('Done')
コード例 #30
0
def channel_segmentation(infile, diameter, tolerance, repeat_max, Zrepeat=10):
    # ROI optimization by Esnake optimisation
    default_options = "stack_order=XYCZT color_mode=Grayscale view=Hyperstack"
    IJ.run("Bio-Formats Importer", default_options + " open=[" + infile + "]")
    imp = IJ.getImage()
    cal = imp.getCalibration()
    channels = [i for i in xrange(1, imp.getNChannels() + 1)]

    log = filename(infile)
    log = re.sub('.ids', '.csv', log)
    XZdrift, YZdrift = retrieve_Zdrift(log)
    XZpt = [i * imp.getWidth() / Zrepeat for i in xrange(1, Zrepeat - 1)]
    YZpt = [i * imp.getHeight() / Zrepeat for i in xrange(1, Zrepeat - 1)]

    # Prepare head output file
    for ch in channels:
        csv_name = 'ch' + str(ch) + log
        with open(os.path.join(folder6, csv_name), 'wb') as outfile:
            SegLog = csv.writer(outfile, delimiter=',')
            SegLog.writerow(['spotID', 'Xpos', 'Ypos', 'Zpos',
                             'Quality', 'area', 'intensity', 'min', 'max', 'std'])

    # Retrieve seeds from SpotDetector
    options = IS.MEDIAN | IS.AREA | IS.MIN_MAX | IS.CENTROID
    spots = retrieve_seeds(log)
    for ch in channels:
        for spot in spots:
            repeat = 0
            # Spots positions are given according to calibration, need to
            # convert it to pixel coordinates
            spotID = int(spot[0])
            Xcenter = int(float(spot[2]) / cal.pixelWidth)
            Ycenter = int(float(spot[3]) / cal.pixelHeight)
            Zcenter = float(spot[4]) / cal.pixelDepth
            Quality = float(spot[5])
            # find closest grid location in Zdrift matrix
            Xpt = min(range(len(XZpt)), key=lambda i: abs(XZpt[i] - Xcenter))
            Ypt = min(range(len(YZpt)), key=lambda i: abs(YZpt[i] - Ycenter))
            # Calculate Z position according to SpotZ, calibration and
            # channel-specific Zdrift #
            Zshift = median([float(XZdrift[Xpt][ch - 1]),
                             float(YZdrift[Ypt][ch - 1])]) / cal.pixelDepth
            correctZ = int(Zcenter - Zshift)
            imp.setPosition(ch, correctZ, 1)
            imp.getProcessor().setMinAndMax(0, 3000)
            while True:
                manager = RoiManager.getInstance()
                if manager is None:
                    manager = RoiManager()
                roi = OvalRoi(Xcenter - diameter * (1.0 + repeat / 10.0) / 2.0, Ycenter - diameter * (
                    1.0 + repeat / 10.0) / 2.0, diameter * (1.0 + repeat / 10.0), diameter * (1.0 + repeat / 10.0))
                imp.setRoi(roi)
                IJ.run(imp, "E-Snake", "target_brightness=Bright control_points=3 gaussian_blur=0 energy_type=Mixture alpha=2.0E-5 max_iterations=20 immortal=false")
                roi_snake = manager.getRoisAsArray()[0]
                imp.setRoi(roi_snake)
                stats = IS.getStatistics(
                    imp.getProcessor(), options, imp.getCalibration())
                manager.reset()
                if stats.area > 20.0 and stats.area < 150.0 and boundaries(Xcenter, Ycenter, stats.xCentroid / cal.pixelWidth, stats.yCentroid / cal.pixelHeight, tolerance):
                    Sarea = stats.area
                    Sintensity = stats.median
                    Smin = stats.min
                    Smax = stats.max
                    Sstd = stats.stdDev
                    break
                elif repeat > repeat_max:
                    roi = OvalRoi(Xcenter - diameter / 2.0,
                                  Ycenter - diameter / 2.0, diameter, diameter)
                    imp.setRoi(roi)
                    manager.add(imp, roi, i)
                    stats = IS.getStatistics(
                        imp.getProcessor(), options, imp.getCalibration())
                    Sarea = stats.area
                    Sintensity = stats.median
                    Smin = stats.min
                    Smax = stats.max
                    Sstd = stats.stdDev
                    break
                else:
                    repeat += 1
            # Save results
            csv_name = 'ch' + str(ch) + log
            with open(os.path.join(folder6, csv_name), 'ab') as outfile:
                SegLog = csv.writer(outfile, delimiter=',')
                SegLog.writerow([spotID, Xcenter, Ycenter, correctZ,
                                 Quality, Sarea, Sintensity, Smin, Smax, Sstd])
            # End spot optimization
        # End spots
    # End channels
    IJ.selectWindow(filename(infile))
    IJ.run("Close")
コード例 #31
0
ファイル: MasktoRoi.py プロジェクト: kapoorlab/IJCurieMacros
def batch_open_images(pathRoi,
                      pathMask,
                      file_typeImage=None,
                      name_filterImage=None,
                      recursive=False):
    '''Open all files in the given folder.
    :param path: The path from were to open the images. String and java.io.File are allowed.
    :param file_type: Only accept files with the given extension (default: None).
    :param name_filter: Reject files that contain the given string (default: wild characters).
    :param recursive: Process directories recursively (default: False).
    '''
    # Converting a File object to a string.
    if isinstance(pathMask, File):
        pathMask = pathMask.getAbsolutePath()

    def check_type(string):
        '''This function is used to check the file type.
        It is possible to use a single string or a list/tuple of strings as filter.
        This function can access the variables of the surrounding function.
        :param string: The filename to perform the check on.
        '''
        if file_typeImage:
            # The first branch is used if file_type is a list or a tuple.
            if isinstance(file_typeImage, (list, tuple)):
                for file_type_ in file_typeImage:
                    if string.endswith(file_type_):
                        # Exit the function with True.
                        return True
                    else:
                        # Next iteration of the for loop.
                        continue
            # The second branch is used if file_type is a string.
            elif isinstance(file_typeImage, string):
                if string.endswith(file_typeImage):
                    return True
                else:
                    return False
            return False
        # Accept all files if file_type is None.
        else:
            return True

    def check_filter(string):
        '''This function is used to check for a given filter.
        It is possible to use a single string or a list/tuple of strings as filter.
        This function can access the variables of the surrounding function.
        :param string: The filename to perform the filtering on.
        '''
        if name_filterImage:
            # The first branch is used if name_filter is a list or a tuple.
            if isinstance(name_filterImage, (list, tuple)):
                for name_filter_ in name_filterImage:
                    if name_filter_ in string:
                        # Exit the function with True.

                        return True
                    else:
                        # Next iteration of the for loop.
                        continue
            # The second branch is used if name_filter is a string.
            elif isinstance(name_filterImage, string):
                if name_filterImage in string:
                    return True
                else:
                    return False
            return False
        else:
            # Accept all files if name_filter is None.
            return True

    # We collect all files to open in a list.
    path_to_Image = []
    # Replacing some abbreviations (e.g. $HOME on Linux).
    path = os.path.expanduser(pathMask)
    path = os.path.expandvars(pathMask)
    # If we don't want a recursive search, we can use os.listdir().
    if not recursive:
        for file_name in os.listdir(pathMask):
            full_path = os.path.join(pathMask, file_name)
            if os.path.isfile(full_path):
                if check_type(file_name):
                    if check_filter(file_name):
                        path_to_Image.append(full_path)
    # For a recursive search os.walk() is used.
    else:
        # os.walk() is iterable.
        # Each iteration of the for loop processes a different directory.
        # the first return value represents the current directory.
        # The second return value is a list of included directories.
        # The third return value is a list of included files.
        for directory, dir_names, file_names in os.walk(pathMask):
            # We are only interested in files.
            for file_name in file_names:
                # The list contains only the file names.
                # The full path needs to be reconstructed.
                full_path = os.path.join(directory, file_name)
                # Both checks are performed to filter the files.
                if check_type(file_name):
                    if check_filter(file_name) is False:
                        # Add the file to the list of images to open.
                        path_to_Image.append([
                            full_path,
                            os.path.basename(os.path.splitext(full_path)[0])
                        ])
    # Create the list that will be returned by this function.
    Masks = []
    rois = []
    ImageRois = []
    for img_path, file_name in path_to_Image:
        # IJ.openImage() returns an ImagePlus object or None.
        if check_filter(file_name):
            continue
        else:
            MaskName = str(pathMask) + '/' + file_name + '.tif'
            Mask = IJ.openImage(MaskName)

            Mask.show()
            rm = RoiManager.getInstance()
            if (rm == None):
                rm = RoiManager()
            rm.runCommand("Delete")
            IJ.selectWindow(file_name + '.tif')
            IJ.run("Find Edges")
            IJ.setAutoThreshold(Mask, "Default dark")
            IJ.run("Threshold")
            IJ.setThreshold(0, 0)

            IJ.run("Convert to Mask")
            IJ.run("Invert")
            IJ.run("Create Selection")
            rm.runCommand("Add")

            # An object equals True and None equals False.

            rois = rm.getRoisAsArray()
            rm.runCommand("Save",
                          str(pathRoi) + "/" + file_name + '.roi')
            Mask.changes = False
            Mask.close()

            ImageRois.append(rois)
    return ImageRois
コード例 #32
0
def process(subDir, subsubDir, outputDirectory, filename):

    subFolder = subDir + "/" + subsubDir

    # Opens the d0 image and sets default properties

    imp = IJ.openImage(inputDirectory + subFolder + '/' + filename)
    IJ.run(
        imp, "Properties...",
        "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001"
    )

    # Sets the threshold and watersheds. for more details on image processing, see https://imagej.nih.gov/ij/developer/api/ij/process/ImageProcessor.html

    ic = ImageConverter(imp)
    ic.convertToGray8()
    imp.updateAndDraw()
    dup = imp.duplicate()
    IJ.run(
        dup, "Convolve...",
        "text1=[-1 -1 -1 -1 -1\n-1 -1 -1 -1 -1\n-1 -1 24 -1 -1\n-1 -1 -1 -1 -1\n-1 -1 -1 -1 -1\n] normalize"
    )
    stats = dup.getStatistics(Measurements.MEAN | Measurements.MIN_MAX
                              | Measurements.STD_DEV)
    dup.close()
    blurry = (stats.mean < 18 and stats.stdDev < 22) or stats.max < 250

    IJ.setThreshold(imp, lowerBounds[0], 255)

    IJ.run(imp, "Convert to Mask", "")
    IJ.run(imp, "Watershed", "")
    if displayImages:
        imp.show()
        WaitForUserDialog("Title", "Look at image").show()

    # Counts and measures the area of particles and adds them to a table called areas. Also adds them to the ROI manager

    table = ResultsTable()
    roim = RoiManager(True)
    ParticleAnalyzer.setRoiManager(roim)
    pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA,
                          table, 15, 9999999999999999, 0.2, 1.0)
    pa.setHideOutputImage(True)
    pa.analyze(imp)

    if not displayImages:
        imp.changes = False
        imp.close()

    areas = table.getColumn(0)

    # This loop goes through the remaining channels for the other markers, by replacing the d0 at the end with its corresponding channel
    # It will save all the area fractions into a 2d array called areaFractionsArray

    areaFractionsArray = []
    areaMeansArray = []
    means = []
    totalAreas = []
    for chan in channels:
        v, x = chan
        # Opens each image and thresholds

        imp = IJ.openImage(inputDirectory + subFolder + '/' +
                           filename.replace("d0.TIF", "d" + str(x) + ".TIF"))
        IJ.run(
            imp, "Properties...",
            "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001"
        )
        ic = ImageConverter(imp)
        ic.convertToGray8()
        imp.updateAndDraw()

        stats = imp.getStatistics(Measurements.MEAN)
        means.append(stats.mean)

        areaMeans = []
        for roi in roim.getRoisAsArray():
            imp.setRoi(roi)
            stats = imp.getStatistics(Measurements.MEAN)
            areaMeans.append(stats.mean)

        IJ.setThreshold(imp, lowerBounds[x], 255)
        IJ.run(imp, "Convert to Mask", "")

        if displayImages:
            imp.show()
            WaitForUserDialog("Title", "Look at image").show()

        stats = imp.getStatistics(Measurements.AREA_FRACTION)
        totalAreas.append(stats.areaFraction)

        # Measures the area fraction of the new image for each ROI from the ROI manager.
        areaFractions = []

        for roi in roim.getRoisAsArray():
            imp.setRoi(roi)
            stats = imp.getStatistics(Measurements.AREA_FRACTION)
            areaFractions.append(stats.areaFraction)

        # Saves the results in areaFractionArray

        areaFractionsArray.append(areaFractions)
        areaMeansArray.append(sum(areaMeans) / len(areaMeans))

        if not displayImages:
            imp.changes = False
            imp.close()
    roim.close()

    # Figures out what well the image is a part of

    ind = filename.index("p00_0_")
    row = filename[ind + 6:ind + 7]
    column = str(int(filename[ind + 7:ind + 9]))

    # Creates the summary dictionary which will correspond to a single row in the output csv, with each key being a column

    summary = {}

    # Finds the name of the well from the nameArray 2d array

    if row in nameArray:
        if column in nameArray[row]:
            summary['Name'] = nameArray[row][column]

    summary['Image'] = filename
    summary['Directory'] = subDir
    summary['SubDirectory'] = subsubDir
    summary['Row'] = row
    summary['Column'] = column

    # Adds usual columns

    summary['size-average'] = 0
    summary['#nuclei'] = 0
    summary['all-negative'] = 0

    summary['too-big-(>' + str(tooBigThreshold) + ')'] = 0
    summary['too-small-(<' + str(tooSmallThreshold) + ')'] = 0

    summary['image-quality'] = blurry

    # Creates the fieldnames variable needed to create the csv file at the end.

    fieldnames = [
        'Name', 'Directory', 'SubDirectory', 'Image', 'Row', 'Column',
        'size-average', 'image-quality',
        'too-big-(>' + str(tooBigThreshold) + ')',
        'too-small-(<' + str(tooSmallThreshold) + ')', '#nuclei',
        'all-negative'
    ]

    # Adds the columns for each individual marker (ignoring Dapi since it was used to count nuclei)

    for chan in channels:
        v, x = chan
        summary[v + "-positive"] = 0
        summary[v + "-intensity"] = means[x]
        summary[v + "-area"] = totalAreas[x]
        summary[v + "-intensity-in-nuclei"] = areaMeansArray[x]
        summary[v + "-area-fraction-in-nuclei"] = sum(
            areaFractionsArray[x]) / len(areaFractionsArray[x])
        fieldnames.append(v + "-positive")
        fieldnames.append(v + "-intensity")
        fieldnames.append(v + "-area")
        fieldnames.append(v + "-intensity-in-nuclei")
        fieldnames.append(v + "-area-fraction-in-nuclei")

    # Adds the column for colocalization between first and second marker

    if len(channels) > 2:
        summary[channels[1][0] + '-' + channels[2][0] + '-positive'] = 0
        fieldnames.append(channels[1][0] + '-' + channels[2][0] + '-positive')

    # Adds the columns for colocalization between all three markers

    if len(channels) > 3:
        summary[channels[1][0] + '-' + channels[3][0] + '-positive'] = 0
        summary[channels[2][0] + '-' + channels[3][0] + '-positive'] = 0
        summary[channels[1][0] + '-' + channels[2][0] + '-' + channels[3][0] +
                '-positive'] = 0

        fieldnames.append(channels[1][0] + '-' + channels[3][0] + '-positive')
        fieldnames.append(channels[2][0] + '-' + channels[3][0] + '-positive')
        fieldnames.append(channels[1][0] + '-' + channels[2][0] + '-' +
                          channels[3][0] + '-positive')

    # Loops through each particle and adds it to each field that it is True for.

    areaCounter = 0

    if not (areas is None):
        for z, area in enumerate(areas):
            if not (area is None or summary is None):
                if area > tooBigThreshold:
                    summary['too-big-(>' + str(tooBigThreshold) + ')'] += 1
                elif area < tooSmallThreshold:
                    summary['too-small-(<' + str(tooSmallThreshold) + ')'] += 1
                else:

                    summary['#nuclei'] += 1
                    areaCounter += area

                    temp = 0
                    for y, chan in enumerate(channels):
                        v, x = chan
                        if areaFractionsArray[y][z] > areaFractionThreshold:
                            summary[chan[0] + '-positive'] += 1
                            if x != 0:
                                temp += 1

                    if temp == 0:
                        summary['all-negative'] += 1

                    if len(channels) > 2:
                        if areaFractionsArray[1][z] > areaFractionThreshold:
                            if areaFractionsArray[2][z] > areaFractionThreshold:
                                summary[channels[1][0] + '-' + channels[2][0] +
                                        '-positive'] += 1

                    if len(channels) > 3:
                        if areaFractionsArray[1][z] > areaFractionThreshold:
                            if areaFractionsArray[3][z] > areaFractionThreshold:
                                summary[channels[1][0] + '-' + channels[3][0] +
                                        '-positive'] += 1
                        if areaFractionsArray[2][z] > areaFractionThreshold:
                            if areaFractionsArray[3][z] > areaFractionThreshold:
                                summary[channels[2][0] + '-' + channels[3][0] +
                                        '-positive'] += 1
                                if areaFractionsArray[1][
                                        z] > areaFractionThreshold:
                                    summary[channels[1][0] + '-' +
                                            channels[2][0] + '-' +
                                            channels[3][0] + '-positive'] += 1

    # Calculate the average of the particles sizes

    if float(summary['#nuclei']) > 0:
        summary['size-average'] = round(areaCounter / summary['#nuclei'], 2)

    # Opens and appends one line on the final csv file for the subfolder (remember that this is still inside the loop that goes through each image)

    with open(outputDirectory + "/" + outputName + ".csv", 'a') as csvfile:

        writer = csv.DictWriter(csvfile,
                                fieldnames=fieldnames,
                                extrasaction='ignore',
                                lineterminator='\n')
        if os.path.getsize(outputDirectory + "/" + outputName + ".csv") < 1:
            writer.writeheader()
        writer.writerow(summary)
コード例 #33
0
        )
        writer.writeheader()
        writer.writerows(current)
    print("wrote results to {}".format(out_path))


# imp = IJ.openImage(th_files[0])
# imp.show()

# get open image
imp = IJ.getImage()
image_name = imp.getShortTitle()

# get roi manager
roi_manager = RoiManager().getInstance()
all_rois = roi_manager.getRoisAsArray()

csv_name = make_path(out_dir, image_name, ".csv")
roi_name = make_path(out_dir, image_name, "_rois.zip")
old_name = make_path(target_dir, image_name, ".tif")
new_name = make_path(out_dir, image_name, ".tif")

current = []
for roi in all_rois:
    res = get_stats(2, roi, imp)
    current.append(res)

# write csv
write_csv(current, csv_name)
# save all rois
save_rois(roi_manager, roi_name)
コード例 #34
0
def poreDetectionUV(inputImp, inputDataset, inputRoi, ops, data, display, detectionParameters):

	# set calibration
	detectionParameters.setCalibration(inputImp);
	
	# calculate area of roi 
	stats=inputImp.getStatistics()
	inputRoiArea=stats.area
	
	# get the bounding box of the active roi
	inputRec = inputRoi.getBounds()
	x1=long(inputRec.getX())
	y1=long(inputRec.getY())
	x2=x1+long(inputRec.getWidth())-1
	y2=y1+long(inputRec.getHeight())-1
	
	# crop the roi
	interval=FinalInterval( array([x1, y1 ,0], 'l'), array([x2, y2, 2], 'l') )
	#cropped=ops.image().crop(interval, None, inputDataset.getImgPlus() ) 
	cropped=ops.image().crop(inputDataset.getImgPlus() , interval) 
	
	datacropped=data.create(cropped)
	display.createDisplay("cropped", datacropped)
	croppedPlus=IJ.getImage()
	
	# instantiate the duplicator and the substackmaker classes
	duplicator=Duplicator()
	substackMaker=SubstackMaker()
	
	# duplicate the roi
	duplicate=duplicator.run(croppedPlus)
	
	# convert duplicate of roi to HSB and get brightness
	IJ.run(duplicate, "HSB Stack", "");
	brightnessPlus=substackMaker.makeSubstack(duplicate, "3-3")
	brightness=ImgPlus(ImageJFunctions.wrapByte(brightnessPlus))
	brightnessPlus.setTitle("Brightness")
	#brightnessPlus.show()
	
	# make another duplicate, split channels and get red
	duplicate=duplicator.run(croppedPlus)
	channels=ChannelSplitter().split(duplicate)
	redPlus=channels[0]
	red=ImgPlus(ImageJFunctions.wrapByte(redPlus))
	
	# convert to lab
	IJ.run(croppedPlus, "Color Transformer", "colour=Lab")
	IJ.selectWindow('Lab')
	labPlus=IJ.getImage()

	croppedPlus.changes=False
	croppedPlus.close()
	
	# get the A channel
	APlus=substackMaker.makeSubstack(labPlus, "2-2")
	APlus.setTitle('A')
	#APlus.show()
	APlus.getProcessor().resetMinAndMax()
	#APlus.updateAndDraw()
	AThresholded=threshold(APlus, -10, 50)
	
	# get the B channel
	BPlus=substackMaker.makeSubstack(labPlus, "3-3")
	BPlus.setTitle('B')
	#BPlus.show()
	BPlus.getProcessor().resetMinAndMax()
	#BPlus.updateAndDraw()
	BThresholded=threshold(BPlus, -10, 50)
	
	# AND the Athreshold and Bthreshold to get a map of the red pixels
	ic = ImageCalculator();
	redMask = ic.run("AND create", AThresholded, BThresholded);
	IJ.run(redMask, "Divide...", "value=255");
	
	labPlus.close()

	fast=True
	
	# threshold the spots from the red channel
	if (fast==False):
		thresholdedred=SpotDetectionGray(red, data, display, ops, "triangle")
		impthresholdedred = ImageJFunctions.wrap(thresholdedred, "wrapped")
	else:
		impthresholdedred=SpotDetection2(redPlus)
	
	# threshold the spots from the brightness channel
	if (fast==False):
		thresholded=SpotDetectionGray(brightness, data, display, ops, "triangle")
		impthresholded=ImageJFunctions.wrap(thresholded, "wrapped")
	else:
		impthresholded=SpotDetection2(brightnessPlus)
		
	# or the thresholding results from red and brightness channel
	impthresholded = ic.run("OR create", impthresholded, impthresholdedred);
	
	roim=RoiManager(True)
	
	# convert to mask
	Prefs.blackBackground = True
	IJ.run(impthresholded, "Convert to Mask", "")
	
	def isRed(imp, roi):
		stats = imp.getStatistics()
	
		if (stats.mean>detectionParameters.porphyrinRedPercentage): return True
		else: return False
	
	def notRed(imp, roi):
		stats = imp.getStatistics()
	
		if (stats.mean>detectionParameters.porphyrinRedPercentage): return False
		else: return True


	roiClone=inputRoi.clone()
	roiClone.setLocation(0,0)
	Utility.clearOutsideRoi(impthresholded, roiClone)

	impthresholded.show()
	
	countParticles(impthresholded, roim, detectionParameters.porphyrinMinSize, detectionParameters.porphyrinMaxSize, \
		detectionParameters.porphyrinMinCircularity, detectionParameters.porphyrinMaxCircularity)
	
	uvPoreList=[]
	for roi in roim.getRoisAsArray():
		uvPoreList.append(roi.clone())

	
	#allList=uvPoreList+closedPoresList+openPoresList
	
	# count particles that are porphyrins (red)
	porphyrinList=CountParticles.filterParticlesWithFunction(redMask, uvPoreList, isRed)
	# count particles that are visible on uv but not porphyrins
	sebumList=CountParticles.filterParticlesWithFunction(redMask, uvPoreList, notRed)

	
	# for each roi add the offset such that the roi is positioned in the correct location for the 
	# original image
	[roi.setLocation(roi.getXBase()+x1, roi.getYBase()+y1) for roi in uvPoreList]
	
	# draw the ROIs on to the image
	inputImp.getProcessor().setColor(Color.green)
	IJ.run(inputImp, "Line Width...", "line=3");
	inputImp.getProcessor().draw(inputRoi)
	IJ.run(inputImp, "Line Width...", "line=1");
	[CountParticles.drawParticleOnImage(inputImp, roi, Color.magenta) for roi in porphyrinList]
	[CountParticles.drawParticleOnImage(inputImp, roi, Color.green) for roi in sebumList]	
	inputImp.updateAndDraw()

	# calculate stats for the UV visible particles
	detectionParameters.setCalibration(APlus)
	statsDictUV=CountParticles.calculateParticleStatsUV(APlus, BPlus, redMask, roim.getRoisAsArray())
	
	totalUVPoreArea=0
	for area in statsDictUV['Areas']:
		totalUVPoreArea=totalUVPoreArea+area
	averageUVPoreArea=totalUVPoreArea/len(statsDictUV['Areas'])

	poreDiameter=0
	for diameter in statsDictUV['Diameters']:
		poreDiameter=poreDiameter+diameter
	poreDiameter=poreDiameter/len(statsDictUV['Diameters'])

	redTotal=0
	for red in statsDictUV['redPercentage']:
		redTotal=redTotal+red
	redAverage=redTotal/len(statsDictUV['redPercentage'])

	statslist=[len(porphyrinList), 100*redAverage];
	statsheader=[Messages.Porphyrins,  Messages.PercentageRedPixels]

	print("Roi Area: "+str(inputRoiArea))
	print("Total Pore Area: "+str(totalUVPoreArea))
	print("Average Pore Area: "+str(averageUVPoreArea))
	print str(len(uvPoreList))+" "+str(len(porphyrinList))+" "+str(len(sebumList))+" "+str(100*totalUVPoreArea/inputRoiArea)+" "+str(100*redAverage)
	print "cp min circularity"+str(detectionParameters.closedPoresMinCircularity)+":"+str(detectionParameters.closedPoresMinSize)

	# close the thresholded image
	impthresholded.changes=False
	impthresholded.close()
	
	return uvPoreList, statslist, statsheader
コード例 #35
0
def batch_open_images(pathImage, pathRoi, pathMask, file_typeImage=None,  name_filterImage=None,  recursive=False):
    '''Open all files in the given folder.
    :param path: The path from were to open the images. String and java.io.File are allowed.
    :param file_type: Only accept files with the given extension (default: None).
    :param name_filter: Reject files that contain the given string (default: wild characters).
    :param recursive: Process directories recursively (default: False).
    '''
    # Converting a File object to a string.
    if isinstance(pathImage, File):
        pathImage = pathImage.getAbsolutePath()

    def check_type(string):
        '''This function is used to check the file type.
        It is possible to use a single string or a list/tuple of strings as filter.
        This function can access the variables of the surrounding function.
        :param string: The filename to perform the check on.
        '''
        if file_typeImage:
            # The first branch is used if file_type is a list or a tuple.
            if isinstance(file_typeImage, (list, tuple)):
                for file_type_ in file_typeImage:
                    if string.endswith(file_type_):
                        # Exit the function with True.
                        return True
                    else:
                        # Next iteration of the for loop.
                        continue
            # The second branch is used if file_type is a string.
            elif isinstance(file_typeImage, string):
                if string.endswith(file_typeImage):
                    return True
                else:
                    return False
            return False
        # Accept all files if file_type is None.
        else:
            return True

    def dog_detection(overlay,img, imp, cal):

                 # Create a variable of the correct type (UnsignedByteType) for the value-extended view
				 zero = img.randomAccess().get().createVariable()
				
				 # Run the difference of Gaussian
				 cell = 8.0 # microns in diameter
				 min_peak = 2.0 # min intensity for a peak to be considered
				 dog = DogDetection(Views.extendValue(img, zero), img,
				                   [cal.pixelWidth, cal.pixelHeight,cal.pixelDepth],
				                   cell / 2, cell,
				                   DogDetection.ExtremaType.MINIMA, 
				                   min_peak, False,
				                   DoubleType())
				
				 peaks = dog.getPeaks()
				 roi = OvalRoi(0, 0, cell/cal.pixelWidth, cell/cal.pixelHeight)  
				 print ('Number of cells = ', len(peaks))
			 	 p = zeros(img.numDimensions(), 'i')  
			 	
				 boundRect = imp.getRoi()
				 for peak in peaks:  
				    # Read peak coordinates into an array of integers  XYZ location of spots
				    peak.localize(p)  
				    print(p)
				    if(boundRect is not None and boundRect.contains(p[0], p[1])):
						    oval = OvalRoi(p[0], p[1],cell/cal.pixelWidth,  cell/cal.pixelHeight)
						    oval.setColor(Color.RED)
						    overlay.add(oval) 

    def check_filter(string):
        '''This function is used to check for a given filter.
        It is possible to use a single string or a list/tuple of strings as filter.
        This function can access the variables of the surrounding function.
        :param string: The filename to perform the filtering on.
        '''
        if name_filterImage:
            # The first branch is used if name_filter is a list or a tuple.
            if isinstance(name_filterImage, (list, tuple)):
                for name_filter_ in name_filterImage:
                    if name_filter_ in string:
                        # Exit the function with True.
                        
                        return True
                    else:
                        # Next iteration of the for loop.
                        continue
            # The second branch is used if name_filter is a string.
            elif isinstance(name_filterImage, string):
                if name_filterImage in string:
                    return True
                else:
                    return False
            return False
        else:
        # Accept all files if name_filter is None.
            return True

   

    # We collect all files to open in a list.
    path_to_Image = []
    # Replacing some abbreviations (e.g. $HOME on Linux).
    path = os.path.expanduser(pathImage)
    path = os.path.expandvars(pathImage)
    # If we don't want a recursive search, we can use os.listdir().
    if not recursive:
        for file_name in os.listdir(pathImage):
            full_path = os.path.join(pathImage, file_name)
            if os.path.isfile(full_path):
                if check_type(file_name):
                    if check_filter(file_name):
                        path_to_Image.append(full_path)
    # For a recursive search os.walk() is used.
    else:
        # os.walk() is iterable.
        # Each iteration of the for loop processes a different directory.
        # the first return value represents the current directory.
        # The second return value is a list of included directories.
        # The third return value is a list of included files.
        for directory, dir_names, file_names in os.walk(pathImage):
            # We are only interested in files.
            for file_name in file_names:
                # The list contains only the file names.
                # The full path needs to be reconstructed.
                full_path = os.path.join(directory, file_name)
                # Both checks are performed to filter the files.
                if check_type(file_name):
                    if check_filter(file_name) is False:
                        # Add the file to the list of images to open.
                        path_to_Image.append([full_path, os.path.basename(os.path.splitext(full_path)[0])])
    # Create the list that will be returned by this function.
    Images = []
    Rois = []
    for img_path, file_name in path_to_Image:
        # IJ.openImage() returns an ImagePlus object or None.
        imp = IJ.openImage(img_path)
        imp.show()
        print(img_path)
        if check_filter(file_name):
         continue;
        else: 
         print(file_name  ,  pathRoi)
        RoiName = str(pathRoi) + '/'+ file_name + '_rois' + '.zip'
        
        if os.path.exists(RoiName):
		         Roi = IJ.open(RoiName)
		         imp = IJ.getImage()
		         cal= imp.getCalibration()# in microns
		         img = IJF.wrap(imp)
		         print('Image Dimensions', img.dimensions, 'Calibration', cal)
		         print(Roi)
		         # An object equals True and None equals False.
		         rm = RoiManager.getInstance()
		         if (rm==None):
		            rm = RoiManager()
		         try:   
		           rm.runCommand('Delete')   
		         except:
		           pass  
		         rm.runCommand("Open", RoiName)
		         rois = rm.getRoisAsArray()
		         overlay = Overlay()
				 for (i in range(0,len(rois))):
					overlay.add(rois[i])
コード例 #36
0
ファイル: AIS_Analysis.py プロジェクト: ksiller/axonanalyzer
def load_rois(roifile):
	rm = RoiManager(False)
	rm.reset()
	rm.runCommand("Open", roifile)
	rois = rm.getRoisAsArray()
	return rois
コード例 #37
0
def poreDetectionUV(inputImp, inputDataset, inputRoi, ops, data, display, detectionParameters):
	
	title =  inputImp.getTitle()
	title=title.replace('UV', 'SD')
	
	print title
	
	#trueColorImp= WindowManager.getImage(title)
	#print type( trueColorImp)
	
	# calculate are of roi 
	stats=inputImp.getStatistics()
	inputRoiArea=stats.area
	
	print inputRoi
	
	# get the bounding box of the active roi
	inputRec = inputRoi.getBounds()
	x1=long(inputRec.getX())
	y1=long(inputRec.getY())
	x2=x1+long(inputRec.getWidth())-1
	y2=y1+long(inputRec.getHeight())-1

	print x1
	print y1
	print x2
	print y2
	
	# crop the roi
	interval=FinalInterval( array([x1, y1 ,0], 'l'), array([x2, y2, 2], 'l') )
	cropped=ops.crop(interval, None, inputDataset.getImgPlus() ) 
	
	datacropped=data.create(cropped)
	display.createDisplay("cropped", datacropped)
	croppedPlus=IJ.getImage()
	
	duplicator=Duplicator()
	substackMaker=SubstackMaker()
	
	# duplicate the roi
	duplicate=duplicator.run(croppedPlus)
	#duplicate.show()
	
	# convert duplicate of roi to HSB and get brightness
	IJ.run(duplicate, "HSB Stack", "");
	brightnessPlus=substackMaker.makeSubstack(duplicate, "3-3")
	brightness=ImgPlus(ImageJFunctions.wrapByte(brightnessPlus))
	brightnessPlus.setTitle("Brightness")
	#brightnessPlus.show()
	
	# make another duplicate, split channels and get red
	duplicate=duplicator.run(croppedPlus)
	channels=ChannelSplitter().split(duplicate)
	redPlus=channels[0]
	red=ImgPlus(ImageJFunctions.wrapByte(redPlus))
	redPlus.show()
	
	# convert to lab
	IJ.run(croppedPlus, "Color Transformer", "colour=Lab")
	IJ.selectWindow('Lab')
	labPlus=IJ.getImage()
	
	# get the A channel
	APlus=substackMaker.makeSubstack(labPlus, "2-2")
	APlus.setTitle('A')
	APlus.show()
	APlus.getProcessor().resetMinAndMax()
	APlus.updateAndDraw()
	AThresholded=threshold(APlus, -10, 50)
	
	# get the B channel
	BPlus=substackMaker.makeSubstack(labPlus, "3-3")
	BPlus.setTitle('B')
	BPlus.show()
	BPlus.getProcessor().resetMinAndMax()
	BPlus.updateAndDraw()
	BThresholded=threshold(BPlus, -10, 50)
	
	# AND the Athreshold and Bthreshold to get a map of the red pixels
	ic = ImageCalculator();
	redMask = ic.run("AND create", AThresholded, BThresholded);
	IJ.run(redMask, "Divide...", "value=255");
	#redMask.show()
	
	labPlus.close()
	
	# threshold the spots from the red channel
	thresholdedred=SpotDetectionGray(red, data, display, ops, False)
	display.createDisplay("thresholdedred", data.create(thresholdedred))
	impthresholdedred = ImageJFunctions.wrap(thresholdedred, "wrapped")
	
	# threshold the spots from the brightness channel
	thresholded=SpotDetectionGray(brightness, data, display, ops, False)
	display.createDisplay("thresholded", data.create(thresholded))
	impthresholded=ImageJFunctions.wrap(thresholded, "wrapped")
	
	# or the thresholding results from red and brightness channel
	impthresholded = ic.run("OR create", impthresholded, impthresholdedred);
	
	# convert to mask
	Prefs.blackBackground = True
	IJ.run(impthresholded, "Convert to Mask", "")
	
	# clear the region outside the roi
	clone=inputRoi.clone()
	clone.setLocation(0,0)
	Utility.clearOutsideRoi(impthresholded, clone)
	
	# create a hidden roi manager
	roim = RoiManager(True)
	
	# count the particlesimp.getProcessor().setColor(Color.green)
	countParticles(impthresholded, roim, detectionParameters.minSize, detectionParameters.maxSize, detectionParameters.minCircularity, detectionParameters.maxCircularity)
	
	# define a function to determine the percentage of pixels that are foreground in a binary image
	# inputs:
	#    imp: binary image, 0=background, 1=foreground
	#    roi: an roi
	def isRed(imp, roi):
		stats = imp.getStatistics()
	
		if (stats.mean>detectionParameters.redPercentage): return True
		else: return False
	
	def notRed(imp, roi):
		stats = imp.getStatistics()
	
		if (stats.mean>detectionParameters.redPercentage): return False
		else: return True

	allList=[]

	for roi in roim.getRoisAsArray():
		allList.append(roi.clone())
	
	# count particles that are red
	redList=CountParticles.filterParticlesWithFunction(redMask, allList, isRed)
	# count particles that are red
	blueList=CountParticles.filterParticlesWithFunction(redMask, allList, notRed)

	print "Total particles: "+str(len(allList))
	print "Filtered particles: "+str(len(redList))

	# for each roi add the offset such that the roi is positioned in the correct location for the 
	# original image
	[roi.setLocation(roi.getXBase()+x1, roi.getYBase()+y1) for roi in allList]
	
	# create an overlay and add the rois
	overlay1=Overlay()
		
	inputRoi.setStrokeColor(Color.green)
	overlay1.add(inputRoi)
	[CountParticles.addParticleToOverlay(roi, overlay1, Color.red) for roi in redList]
	[CountParticles.addParticleToOverlay(roi, overlay1, Color.cyan) for roi in blueList]
	
	def drawAllRoisOnImage(imp, mainRoi, redList, blueList):
		imp.getProcessor().setColor(Color.green)
		IJ.run(imp, "Line Width...", "line=3");
		imp.getProcessor().draw(inputRoi)
		imp.updateAndDraw()
		IJ.run(imp, "Line Width...", "line=1");
		[CountParticles.drawParticleOnImage(imp, roi, Color.magenta) for roi in redList]
		[CountParticles.drawParticleOnImage(imp, roi, Color.green) for roi in blueList]
		imp.updateAndDraw()
	
	drawAllRoisOnImage(inputImp, inputRoi, redList, blueList)
	#drawAllRoisOnImage(trueColorImp, inputRoi, redList, blueList)
	
	# draw overlay
	#inputImp.setOverlay(overlay1)
	#inputImp.updateAndDraw()
	
	statsdict=CountParticles.calculateParticleStats(APlus, BPlus, redMask, roim.getRoisAsArray())
	
	print inputRoiArea

	areas=statsdict['Areas']
	poreArea=0
	for area in areas:
		poreArea=poreArea+area

	ATotal=0
	ALevels=statsdict['ALevel']
	for A in ALevels:
		ATotal=ATotal+A

	AAverage=ATotal/len(ALevels)

	BTotal=0
	BLevels=statsdict['BLevel']
	for B in BLevels:
		BTotal=BTotal+B

	BAverage=BTotal/len(BLevels)

	redTotal=0
	redPercentages=statsdict['redPercentage']
	for red in redPercentages:
		redTotal=redTotal+red

	redAverage=redTotal/len(redPercentages)
	pixwidth=inputImp.getCalibration().pixelWidth

	inputRoiArea=inputRoiArea/(pixwidth*pixwidth)
	
	print str(len(allList))+" "+str(len(redList))+" "+str(len(blueList))+" "+str(poreArea/inputRoiArea)+" "+str(redAverage)
コード例 #38
0
# 4. The script will pop up a file browser. Specify the output file for the ROIs. Press "Open". The coordinates of all
#    ROI polygons will be save to a text file in JSON format.
#
# Frank Vernaillen
# VIB - Vlaams Instituut voor Biotechnologie
# October 2018

from ij import IJ
from ij.plugin.frame import RoiManager
import sys

rm = RoiManager.getInstance()
if rm == None:
    rm = RoiManager()

rois = rm.getRoisAsArray()
if rois == None or len(rois) == 0:
    sys.exit('The ROI manager has no ROIs')

filename = IJ.getFilePath(
    'Specify the output file for the ROIs in JSON format (e.g. myrois.json)')
if filename == None:
    sys.exit('ROI saving canceled by the user.')

# Save the ROIs as JSON arrays
IJ.log("Saving {} ROIs to {}".format(len(rois), filename))
with open(filename, 'w') as f:
    f.write('[\n')
    for i, roi in enumerate(rois):
        polygon = roi.getPolygon()
        f.write('[\n')
コード例 #39
0
def analyze_homogeneity(image_title):
    IJ.selectWindow(image_title)
    raw_imp = IJ.getImage()
    IJ.run(raw_imp, "Duplicate...", "title=Homogeneity duplicate")
    IJ.selectWindow('Homogeneity')
    hg_imp = IJ.getImage()

    # Get a 2D image
    if hg_imp.getNSlices() > 1:
        IJ.run(hg_imp, "Z Project...", "projection=[Average Intensity]")
        hg_imp.close()
        IJ.selectWindow('MAX_Homogeneity')
        hg_imp = IJ.getImage()
        hg_imp.setTitle('Homogeneity')

    # Blur and BG correct the image
    IJ.run(hg_imp, 'Gaussian Blur...', 'sigma=' + str(HOMOGENEITY_RADIUS) + ' stack')

    # Detect the spots
    IJ.setAutoThreshold(hg_imp, HOMOGENEITY_THRESHOLD + " dark")
    rm = RoiManager(True)
    table = ResultsTable()
    pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER,
                          ParticleAnalyzer.EXCLUDE_EDGE_PARTICLES,
                          Measurements.AREA, # measurements
                          table, # Output table
                          0, # MinSize
                          500, # MaxSize
                          0.0, # minCirc
                          1.0) # maxCirc
    pa.setHideOutputImage(True)
    pa.analyze(hg_imp)

    areas = table.getColumn(table.getHeadings().index('Area'))

    median_areas = compute_median(areas)
    st_dev_areas = compute_std_dev(areas, median_areas)
    thresholds_areas = (median_areas - (2 * st_dev_areas), median_areas + (2 * st_dev_areas))

    roi_measurements = {'integrated_density': [],
                        'max': [],
                        'area': []}
    IJ.setForegroundColor(0, 0, 0)
    for roi in rm.getRoisAsArray():
        hg_imp.setRoi(roi)
        if REMOVE_CROSS and hg_imp.getStatistics().AREA > thresholds_areas[1]:
            rm.runCommand('Fill')
        else:
            roi_measurements['integrated_density'].append(hg_imp.getStatistics().INTEGRATED_DENSITY)
            roi_measurements['max'].append(hg_imp.getStatistics().MIN_MAX)
            roi_measurements['integrated_densities'].append(hg_imp.getStatistics().AREA)

        rm.runCommand('Delete')

    measuremnts = {'mean_integrated_density': compute_mean(roi_measurements['integrated_density']),
                   'median_integrated_density': compute_median(roi_measurements['integrated_density']),
                   'std_dev_integrated_density': compute_std_dev(roi_measurements['integrated_density']),
                   'mean_max': compute_mean(roi_measurements['max']),
                   'median_max': compute_median(roi_measurements['max']),
                   'std_dev_max': compute_std_dev(roi_measurements['max']),
                   'mean_area': compute_mean(roi_measurements['max']),
                   'median_area': compute_median(roi_measurements['max']),
                   'std_dev_area': compute_std_dev(roi_measurements['max']),
                   }

    # generate homogeinity image
    # calculate interpoint distance in pixels
    nr_point_columns = int(sqrt(len(measuremnts['mean_max'])))
    # TODO: This is a rough estimation that does not take into account margins or rectangular FOVs
    inter_point_dist = hg_imp.getWidth() / nr_point_columns
    IJ.run(hg_imp, "Maximum...", "radius="+(inter_point_dist*1.22))
    # Normalize to 100
    IJ.run(hg_imp, "Divide...", "value=" + max(roi_measurements['max'] / 100))
    IJ.run(hg_imp, "Gaussian Blur...", "sigma=" + (inter_point_dist/2))
    hg_imp.getProcessor.setMinAndMax(0, 255)

    # Create a LUT based on a predefined threshold
    red = zeros(256, 'b')
    green = zeros(256, 'b')
    blue = zeros(256, 'b')
    acceptance_threshold = HOMOGENEITY_ACCEPTANCE_THRESHOLD * 256 / 100
    for i in range(256):
        red[i] = (i - acceptance_threshold)
        green[i] = (i)
    homogeneity_LUT = LUT(red, green, blue)
    hg_imp.setLut(homogeneity_LUT)

    return hg_imp, measuremnts
コード例 #40
0
def process(subFolder, outputDirectory, filename):

    imp = IJ.openImage(inputDirectory + subFolder + '/' +
                       rreplace(filename, "_ch00.tif", ".tif"))
    IJ.run(
        imp, "Properties...",
        "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001"
    )
    ic = ImageConverter(imp)
    ic.convertToGray8()
    IJ.setThreshold(imp, 2, 255)
    IJ.run(imp, "Convert to Mask", "")
    IJ.run(imp, "Remove Outliers...",
           "radius=5" + " threshold=50" + " which=Dark")
    IJ.run(imp, "Remove Outliers...",
           "radius=5" + " threshold=50" + " which=Bright")

    imp.getProcessor().invert()
    rm = RoiManager(True)
    imp.getProcessor().setThreshold(0, 0, ImageProcessor.NO_LUT_UPDATE)

    boundroi = ThresholdToSelection.run(imp)
    rm.addRoi(boundroi)

    if not displayImages:
        imp.changes = False
        imp.close()

    images = [None] * 5
    intensities = [None] * 5
    blobsarea = [None] * 5
    blobsnuclei = [None] * 5
    bigAreas = [None] * 5

    for chan in channels:
        v, x = chan
        images[x] = IJ.openImage(inputDirectory + subFolder + '/' +
                                 rreplace(filename, "_ch00.tif", "_ch0" +
                                          str(x) + ".tif"))
        imp = images[x]
        for roi in rm.getRoisAsArray():
            imp.setRoi(roi)
            stats = imp.getStatistics(Measurements.MEAN | Measurements.AREA)
            intensities[x] = stats.mean
            bigAreas[x] = stats.area

    rm.close()
    # Opens the ch00 image and sets default properties

    imp = IJ.openImage(inputDirectory + subFolder + '/' + filename)
    IJ.run(
        imp, "Properties...",
        "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001"
    )

    # Sets the threshold and watersheds. for more details on image processing, see https://imagej.nih.gov/ij/developer/api/ij/process/ImageProcessor.html

    ic = ImageConverter(imp)
    ic.convertToGray8()

    IJ.run(imp, "Remove Outliers...",
           "radius=2" + " threshold=50" + " which=Dark")

    IJ.run(imp, "Gaussian Blur...", "sigma=" + str(blur))

    IJ.setThreshold(imp, lowerBounds[0], 255)

    if displayImages:
        imp.show()
    IJ.run(imp, "Convert to Mask", "")
    IJ.run(imp, "Watershed", "")

    if not displayImages:
        imp.changes = False
        imp.close()

    # Counts and measures the area of particles and adds them to a table called areas. Also adds them to the ROI manager

    table = ResultsTable()
    roim = RoiManager(True)
    ParticleAnalyzer.setRoiManager(roim)
    pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA,
                          table, 15, 9999999999999999, 0.2, 1.0)
    pa.setHideOutputImage(True)
    #imp = impM

    # imp.getProcessor().invert()
    pa.analyze(imp)

    areas = table.getColumn(0)

    # This loop goes through the remaining channels for the other markers, by replacing the ch00 at the end with its corresponding channel
    # It will save all the area fractions into a 2d array called areaFractionsArray

    areaFractionsArray = [None] * 5
    for chan in channels:
        v, x = chan
        # Opens each image and thresholds

        imp = images[x]
        IJ.run(
            imp, "Properties...",
            "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001"
        )

        ic = ImageConverter(imp)
        ic.convertToGray8()
        IJ.setThreshold(imp, lowerBounds[x], 255)

        if displayImages:
            imp.show()
            WaitForUserDialog("Title",
                              "Adjust Threshold for Marker " + v).show()

        IJ.run(imp, "Convert to Mask", "")

        # Measures the area fraction of the new image for each ROI from the ROI manager.
        areaFractions = []
        for roi in roim.getRoisAsArray():
            imp.setRoi(roi)
            stats = imp.getStatistics(Measurements.AREA_FRACTION)
            areaFractions.append(stats.areaFraction)

        # Saves the results in areaFractionArray

        areaFractionsArray[x] = areaFractions

    roim.close()

    for chan in channels:
        v, x = chan

        imp = images[x]
        imp.deleteRoi()
        roim = RoiManager(True)
        ParticleAnalyzer.setRoiManager(roim)
        pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER,
                              Measurements.AREA, table, 15, 9999999999999999,
                              0.2, 1.0)
        pa.analyze(imp)

        blobs = []
        for roi in roim.getRoisAsArray():
            imp.setRoi(roi)
            stats = imp.getStatistics(Measurements.AREA)
            blobs.append(stats.area)

        blobsarea[x] = sum(blobs)
        blobsnuclei[x] = len(blobs)

        if not displayImages:
            imp.changes = False
            imp.close()
        roim.reset()
        roim.close()

    # Creates the summary dictionary which will correspond to a single row in the output csv, with each key being a column

    summary = {}

    summary['Image'] = filename
    summary['Directory'] = subFolder

    # Adds usual columns

    summary['size-average'] = 0
    summary['#nuclei'] = 0
    summary['all-negative'] = 0

    summary['too-big-(>' + str(tooBigThreshold) + ')'] = 0
    summary['too-small-(<' + str(tooSmallThreshold) + ')'] = 0

    # Creates the fieldnames variable needed to create the csv file at the end.

    fieldnames = [
        'Name', 'Directory', 'Image', 'size-average',
        'too-big-(>' + str(tooBigThreshold) + ')',
        'too-small-(<' + str(tooSmallThreshold) + ')', '#nuclei',
        'all-negative'
    ]

    # Adds the columns for each individual marker (ignoring Dapi since it was used to count nuclei)

    summary["organoid-area"] = bigAreas[x]
    fieldnames.append("organoid-area")

    for chan in channels:
        v, x = chan
        summary[v + "-positive"] = 0
        fieldnames.append(v + "-positive")

        summary[v + "-intensity"] = intensities[x]
        fieldnames.append(v + "-intensity")

        summary[v + "-blobsarea"] = blobsarea[x]
        fieldnames.append(v + "-blobsarea")

        summary[v + "-blobsnuclei"] = blobsnuclei[x]
        fieldnames.append(v + "-blobsnuclei")

    # Adds the column for colocalization between first and second marker

    if len(channels) > 2:
        summary[channels[1][0] + '-' + channels[2][0] + '-positive'] = 0
        fieldnames.append(channels[1][0] + '-' + channels[2][0] + '-positive')

    # Adds the columns for colocalization between all three markers

    if len(channels) > 3:
        summary[channels[1][0] + '-' + channels[3][0] + '-positive'] = 0
        summary[channels[2][0] + '-' + channels[3][0] + '-positive'] = 0
        summary[channels[1][0] + '-' + channels[2][0] + '-' + channels[3][0] +
                '-positive'] = 0

        fieldnames.append(channels[1][0] + '-' + channels[3][0] + '-positive')
        fieldnames.append(channels[2][0] + '-' + channels[3][0] + '-positive')
        fieldnames.append(channels[1][0] + '-' + channels[2][0] + '-' +
                          channels[3][0] + '-positive')

    # Loops through each particle and adds it to each field that it is True for.

    areaCounter = 0
    for z, area in enumerate(areas):

        log.write(str(area))
        log.write("\n")

        if area > tooBigThreshold:
            summary['too-big-(>' + str(tooBigThreshold) + ')'] += 1
        elif area < tooSmallThreshold:
            summary['too-small-(<' + str(tooSmallThreshold) + ')'] += 1
        else:

            summary['#nuclei'] += 1
            areaCounter += area

            temp = 0
            for chan in channels:
                v, x = chan
                if areaFractionsArray[x][z] > areaFractionThreshold[
                        0]:  #theres an error here im not sure why. i remember fixing it before
                    summary[chan[0] + '-positive'] += 1
                    if x != 0:
                        temp += 1

            if temp == 0:
                summary['all-negative'] += 1

            if len(channels) > 2:
                if areaFractionsArray[1][z] > areaFractionThreshold[1]:
                    if areaFractionsArray[2][z] > areaFractionThreshold[2]:
                        summary[channels[1][0] + '-' + channels[2][0] +
                                '-positive'] += 1

            if len(channels) > 3:
                if areaFractionsArray[1][z] > areaFractionThreshold[1]:
                    if areaFractionsArray[3][z] > areaFractionThreshold[3]:
                        summary[channels[1][0] + '-' + channels[3][0] +
                                '-positive'] += 1
                if areaFractionsArray[2][z] > areaFractionThreshold[2]:
                    if areaFractionsArray[3][z] > areaFractionThreshold[3]:
                        summary[channels[2][0] + '-' + channels[3][0] +
                                '-positive'] += 1
                        if areaFractionsArray[1][z] > areaFractionThreshold[1]:
                            summary[channels[1][0] + '-' + channels[2][0] +
                                    '-' + channels[3][0] + '-positive'] += 1

    # Calculate the average of the particles sizes

    if float(summary['#nuclei']) > 0:
        summary['size-average'] = round(areaCounter / summary['#nuclei'], 2)

    # Opens and appends one line on the final csv file for the subfolder (remember that this is still inside the loop that goes through each image)

    with open(outputDirectory + "/" + outputName + ".csv", 'a') as csvfile:

        writer = csv.DictWriter(csvfile,
                                fieldnames=fieldnames,
                                extrasaction='ignore',
                                lineterminator='\n')
        if os.path.getsize(outputDirectory + "/" + outputName + ".csv") < 1:
            writer.writeheader()
        writer.writerow(summary)
コード例 #41
0
def poreDetectionTrueColor(inputImp, inputDataset, inputRoi, ops, data,
                           display, detectionParameters):

    detectionParameters.setCalibration(inputImp)

    # calculate area of roi
    stats = inputImp.getStatistics()
    inputRoiArea = stats.area

    # get the bounding box of the active roi
    inputRec = inputRoi.getBounds()
    x1 = long(inputRec.getX())
    y1 = long(inputRec.getY())
    x2 = x1 + long(inputRec.getWidth()) - 1
    y2 = y1 + long(inputRec.getHeight()) - 1

    # crop the roi
    interval = FinalInterval(array([x1, y1, 0], 'l'), array([x2, y2, 2], 'l'))
    cropped = ops.crop(interval, None, inputDataset.getImgPlus())

    datacropped = data.create(cropped)
    display.createDisplay("cropped", datacropped)
    croppedPlus = IJ.getImage()

    duplicator = Duplicator()
    substackMaker = SubstackMaker()
    # duplicate the roi
    duplicate = duplicator.run(croppedPlus)

    # separate into RGB and get the blue channel
    IJ.run(duplicate, "RGB Stack", "")
    bluePlus = substackMaker.makeSubstack(duplicate, "3-3")
    blue = ImgPlus(ImageJFunctions.wrapByte(bluePlus))
    bluePlus.setTitle("Blue")

    # duplicate and look for bright spots
    thresholdedLight = SpotDetection2(bluePlus)

    # duplicate and look for dark spots
    thresholdedDark = SpotDetection3(bluePlus, True)

    # convert to mask
    Prefs.blackBackground = True
    #IJ.run(thresholdedDark, "Convert to Mask", "")

    # clear the region outside the roi
    clone = inputRoi.clone()
    clone.setLocation(0, 0)
    Utility.clearOutsideRoi(thresholdedLight, clone)
    Utility.clearOutsideRoi(thresholdedDark, clone)
    roimClosedPores = RoiManager(True)
    detectionParameters.setCalibration(thresholdedDark)
    countParticles(thresholdedDark, roimClosedPores, detectionParameters.closedPoresMinSize, detectionParameters.closedPoresMaxSize, \
     detectionParameters.closedPoresMinCircularity, detectionParameters.closedPoresMaxCircularity)

    # count number of open pores
    roimOpenPores = RoiManager(True)
    detectionParameters.setCalibration(thresholdedDark)
    countParticles(thresholdedDark, roimOpenPores, detectionParameters.openPoresMinSize, detectionParameters.openPoresMaxSize, \
     detectionParameters.openPoresMinCircularity, detectionParameters.openPoresMaxCircularity)

    # count number of sebum
    roimSebum = RoiManager(True)
    detectionParameters.setCalibration(thresholdedLight)
    countParticles(thresholdedLight, roimSebum, detectionParameters.sebumMinSize, detectionParameters.sebumMaxSize, \
     detectionParameters.sebumMinCircularity, detectionParameters.sebumMaxCircularity)

    # create lists for open and closed pores
    closedPoresList = []
    for roi in roimClosedPores.getRoisAsArray():
        closedPoresList.append(roi.clone())
    openPoresList = []
    for roi in roimOpenPores.getRoisAsArray():
        openPoresList.append(roi.clone())

    # create lists for sebum
    sebumsList = []
    for roi in roimSebum.getRoisAsArray():
        sebumsList.append(roi.clone())

    # a list of all pores
    allList = closedPoresList + openPoresList + sebumsList

    # calculate the stats for all pores
    detectionParameters.setCalibration(bluePlus)
    statsDict = CountParticles.calculateParticleStats(bluePlus, allList)

    poresTotalArea = 0
    for area in statsDict['Areas']:
        poresTotalArea = poresTotalArea + area
        print area
    poresAverageArea = poresTotalArea / len(statsDict['Areas'])

    # for each roi add the offset such that the roi is positioned in the correct location for the
    # original image
    [
        roi.setLocation(roi.getXBase() + x1,
                        roi.getYBase() + y1) for roi in allList
    ]

    # draw the rois on the image
    inputImp.getProcessor().setColor(Color.green)
    IJ.run(inputImp, "Line Width...", "line=3")
    inputImp.getProcessor().draw(inputRoi)
    IJ.run(inputImp, "Line Width...", "line=1")
    [
        CountParticles.drawParticleOnImage(inputImp, roi, Color.red)
        for roi in closedPoresList
    ]
    [
        CountParticles.drawParticleOnImage(inputImp, roi, Color.magenta)
        for roi in openPoresList
    ]
    [
        CountParticles.drawParticleOnImage(inputImp, roi, Color.green)
        for roi in sebumsList
    ]

    inputImp.updateAndDraw()

    # close images that represent intermediate steps
    croppedPlus.changes = False
    croppedPlus.close()
    bluePlus.changes = False
    bluePlus.close()

    print "Total ROI Area: " + str(inputRoiArea)
    print "Num closed pores: " + str(len(closedPoresList))
    print "Num open pores: " + str(len(openPoresList))
    print "Num sebums: " + str(len(sebumsList))

    print "Total particles: " + str(
        len(allList)) + " total area: " + str(poresTotalArea)

    statslist = [
        inputRoiArea,
        len(allList),
        len(closedPoresList),
        len(openPoresList),
        len(sebumsList), poresAverageArea, 100 * poresTotalArea / inputRoiArea
    ]
    header = [
        Messages.TotalAreaMask, Messages.TotalDetectedPores,
        Messages.ClosedPores, Messages.OpenPores, Messages.Sebum,
        Messages.PoresAverageArea, Messages.PoresFractionalArea
    ]

    return header, statslist
コード例 #42
0
otsu=ops.run("threshold", ops.create( dimensions2D, BitType()), imgBgs, Otsu())
display.createDisplay("thresholded", data.create(ImgPlus(otsu)))
'''

#Utility.clearOutsideRoi(imp, clone)
IJ.run(imp, "Auto Local Threshold",
       "method=MidGrey radius=15 parameter_1=0 parameter_2=0 white")
IJ.run(imp, "Fill Holes", "")
IJ.run(imp, "Close-", "")
IJ.run(imp, "Watershed", "")

iplus.updateAndDraw()

# create a hidden roi manager
roim = RoiManager(True)

# count the particles
countParticles(iplus, roim, 10, 200, 0.5, 1.0)

[truecolor1.getProcessor().draw(roi) for roi in roim.getRoisAsArray()]
truecolor1.updateAndDraw()

#Prefs.blackBackground = False;
#IJ.run("Make Binary", "");

#IJ.run("LoG 3D");

#IJ.run("Duplicate...", "title="+"test")
#IJ.run("RGB Stack");
#IJ.run("Convert Stack to Images");
コード例 #43
0
if pa.analyze(blueImp):
    print "All ok"
else:
    print "There was a problem in analyzing", blueImp

#Export roi center and radius to TSV
default_name = imp.getShortTitle() + "_cells"
sd = SaveDialog('Save ellypses to file', default_name, '.tsv')
dirToSave = sd.getDirectory()
fileh = open(dirToSave + sd.getFileName(), "w")
#fileh.write("name\tx1\tx2\ty1\ty2\n")

roim = RoiManager.getInstance()
if roim is None:
    sys.exit(1)
rois = roim.getRoisAsArray()
print rois
for roi in rois:
    bounds = roi.getBounds()
    x1 = (float(bounds.x) + float(bounds.x + bounds.width)) / 2.
    y1 = (float(bounds.y) + float(bounds.y + bounds.height)) / 2.

    fileh.write("\t".join([
        roi.getName(),
        str(x1),
        str(y1),
        str(bounds.width),
        str(bounds.height)
    ]) + "\n")
fileh.close()
コード例 #44
0
# Binarize
imp = IJ.getImage()
imp1 = imp.duplicate()
IJ.run(imp1, "Subtract Background...", "rolling=15 stack")
IJ.run(imp1, "Median...", "radius=2 stack")
IJ.run(imp1, "Gaussian Blur...", "sigma=2 stack")
Prefs.blackBackground = True;
IJ.run(imp1, "Convert to Mask", "method=MaxEntropy background=Dark calculate black")
IJ.run(imp1, "Analyze Particles...", "size=400-Infinity pixel exclude add stack")
imp1.show()

# Analyze by using ROI manger
rm = RoiManager()
rm = RoiManager.getInstance()

roi_array = rm.getRoisAsArray()

# xyで構成される入れ子構造を組みかえる
def xypoint_flatten(roi_array = RoiManager.getInstance().getRoisAsArray()):
    if roi_array is not None:
        xpoint = [[] for _ in range(len(roi_array))]
        ypoint = [[] for _ in range(len(roi_array))]
        for i, roi in enumerate(roi_array):
            xy_coord = list(roi.getContainedPoints())
            for j, coord in enumerate(xy_coord):
                xpoint[i].append(coord.x)
                ypoint[i].append(coord.y)
    return xpoint, ypoint
    

xpoint,ypoint = xypoint_flatten()
コード例 #45
0
def batch_open_images(pathImage, file_typeImage, name_filterImage=None):

    if isinstance(pathImage, File):
        pathImage = pathImage.getAbsolutePath()

    def check_filter(string):
        '''This function is used to check for a given filter.
        It is possible to use a single string or a list/tuple of strings as filter.
        This function can access the variables of the surrounding function.
        :param string: The filename to perform the filtering on.
        '''
        if name_filterImage:
            # The first branch is used if name_filter is a list or a tuple.
            if isinstance(name_filterImage, (list, tuple)):
                for name_filter_ in name_filterImage:
                    if name_filter_ in string:
                        # Exit the function with True.

                        return True
                    else:
                        # Next iteration of the for loop.
                        continue
            # The second branch is used if name_filter is a string.
            elif isinstance(name_filterImage, string):
                if name_filterImage in string:
                    return True
                else:
                    return False
            return False
        else:
            # Accept all files if name_filter is None.
            return True

    def check_type(string):
        '''This function is used to check the file type.
        It is possible to use a single string or a list/tuple of strings as filter.
        This function can access the variables of the surrounding function.
        :param string: The filename to perform the check on.
        '''
        if file_typeImage:
            # The first branch is used if file_type is a list or a tuple.
            if isinstance(file_typeImage, (list, tuple)):
                for file_type_ in file_typeImage:
                    if string.endswith(file_type_):
                        # Exit the function with True.
                        return True
                    else:
                        # Next iteration of the for loop.
                        continue
            # The second branch is used if file_type is a string.
            elif isinstance(file_typeImage, string):
                if string.endswith(file_typeImage):
                    return True
                else:
                    return False
            return False
        # Accept all files if file_type is None.
        else:
            return True

    # We collect all files to open in a list.
    path_to_Image = []
    # Replacing some abbreviations (e.g. $HOME on Linux).
    path = os.path.expanduser(pathImage)
    path = os.path.expandvars(pathImage)
    # If we don't want a recursive search, we can use os.listdir().

    for directory, dir_names, file_names in os.walk(pathImage):
        # We are only interested in files.
        for file_name in file_names:
            # The list contains only the file names.
            # The full path needs to be reconstructed.
            full_path = os.path.join(directory, file_name)
            # Both checks are performed to filter the files.
            if check_type(file_name):
                if check_filter(file_name) is False:
                    # Add the file to the list of images to open.
                    path_to_Image.append([
                        full_path,
                        os.path.basename(os.path.splitext(full_path)[0])
                    ])
    Images = []

    for img_path, file_name in path_to_Image:

        imp = IJ.openImage(img_path)
        maskimage = ops.run("create.img", imp)
        cursor = maskimage.localizingCursor()
        imp.show()
        IJ.run("Select None")
        overlay = imp.getOverlay()
        if overlay == None:

            overlay = Overlay()
            imp.setOverlay(overlay)
        else:

            overlay.clear()

        imp.updateAndDraw()
        impY = imp.getHeight()
        impX = imp.getWidth()
        print(impY, impX)
        rm = RoiManager.getInstance()
        if not rm:
            rm = RoiManager()

        rm.runCommand("reset")
        WaitForUserDialog("Select the landmark and the second point").show()
        rm.runCommand("Add")
        roi_points = rm.getRoisAsArray()
        for Roi in roi_points:

            xpoints = Roi.getPolygon().xpoints
            ypoints = Roi.getPolygon().ypoints
            print(xpoints, ypoints)

        print('Start Landmark', xpoints[0], ypoints[0])
        fixedpointX = xpoints[0]
        fixedpointY = ypoints[0]
        print('End Landmark', xpoints[1], ypoints[1])
        IJ.makeLine(xpoints[0], ypoints[0], xpoints[1], ypoints[1])
        gui = GenericDialog("Rotation Angle")
        gui.addNumericField("Choose Angle", 15, 0)
        gui.showDialog()
        if gui.wasOKed():

            rotateangle = gui.getNextNumber()
            IJ.run("Rotate...", "angle=" + str(int(float(rotateangle))))

        rm.runCommand("reset")
        overlay = imp.getOverlay()
        rm.runCommand("Add")
        roi_points = rm.getRoisAsArray()

        for Roi in roi_points:
            xpoints = Roi.getPolygon().xpoints
            ypoints = Roi.getPolygon().ypoints
            print(xpoints, ypoints)

        print('Rotated Start Landmark', xpoints[0], ypoints[0])
        print('Rotated End Landmark', xpoints[1], ypoints[1])
        slope = (ypoints[1] - ypoints[0]) / (xpoints[1] - xpoints[0] + 1.0E-20)
        intercept = fixedpointY - slope * fixedpointX
        print(fixedpointX, fixedpointY)
        print('Slope', slope, 'Intercept', intercept)
        XwY0 = -intercept / slope
        YxwY0 = slope * XwY0 + intercept

        XwYmax = (impY - intercept) / slope
        YxwYmax = slope * XwYmax + intercept

        YwX0 = intercept
        XywX0 = (YwX0 - intercept) / slope
        YwXmax = impX * slope + intercept
        XxwXmax = (YwXmax - intercept) / slope
        rm.runCommand("reset")

        if XwY0 > 0:
            lineROIA = Line(fixedpointX, fixedpointY, XwY0, YxwY0)
            lineROIB = Line(fixedpointX, fixedpointY, XwYmax, YxwYmax)
            overlay.add(lineROIA)

            overlay.add(lineROIB)

        if XwY0 < 0:
            lineROIA = Line(fixedpointX, fixedpointY, XywX0, YwX0)
            lineROIB = Line(fixedpointX, fixedpointY, XxwXmax, YwXmax)
            overlay.add(lineROIA)

            overlay.add(lineROIB)

        while cursor.hasNext():
            cursor.fwd()
            X = cursor.getDoublePosition(0)
            Y = cursor.getDoublePosition(1)
            if abs(Y - slope * X - intercept) <= 4:
                cursor.get().set(0)
            else:
                cursor.get().set(1)
        labeling = ops.labeling().cca(maskimage,
                                      StructuringElement.EIGHT_CONNECTED)

        # get the index image (each object will have a unique gray level)
        labelingIndex = labeling.getIndexImg()
        dataImg = ds.create(labelingIndex)
        location = ls.resolve(
            str(savedir) + '/' + file_name + '.' + file_type_image)
        dio.save(dataImg, location)
        imp.close()
コード例 #46
0
def poreDetectionTrueColor(inputImp, inputDataset, inputRoi, ops, data, display, detectionParameters):
	
	detectionParameters.setCalibration(inputImp);
	
	# calculate area of roi 
	stats=inputImp.getStatistics()
	inputRoiArea=stats.area
	
	# get the bounding box of the active roi
	inputRec = inputRoi.getBounds()
	x1=long(inputRec.getX())
	y1=long(inputRec.getY())
	x2=x1+long(inputRec.getWidth())-1
	y2=y1+long(inputRec.getHeight())-1
	
	# crop the roi
	interval=FinalInterval( array([x1, y1 ,0], 'l'), array([x2, y2, 2], 'l') )
	cropped=ops.image().crop(inputDataset.getImgPlus(), interval ) 
	
	datacropped=data.create(cropped)
	display.createDisplay("cropped", datacropped)
	croppedPlus=IJ.getImage()
	
	# instantiate the duplicator and the substackmaker classes
	duplicator=Duplicator()
	substackMaker=SubstackMaker()
	
	# duplicate the roi
	duplicate=duplicator.run(croppedPlus)

	# separate into RGB and get the blue channel
	IJ.run(duplicate, "RGB Stack", "")
	bluePlus=substackMaker.makeSubstack(duplicate, "3-3")
	blue=ImgPlus(ImageJFunctions.wrapByte(bluePlus))
	bluePlus.setTitle("Blue")
	
	# duplicate and look for bright spots
	thresholdedLight=SpotDetection2(bluePlus)

	# duplicate and look for dark spots
	thresholdedDark=SpotDetection3(bluePlus, True)

	# convert to mask
	Prefs.blackBackground = True
	#IJ.run(thresholdedDark, "Convert to Mask", "")substackMaker

	# clear the region outside the roi
	clone=inputRoi.clone()
	clone.setLocation(0,0)
	Utility.clearOutsideRoi(thresholdedLight, clone)
	Utility.clearOutsideRoi(thresholdedDark, clone)
	roimClosedPores = RoiManager(True)
	detectionParameters.setCalibration(thresholdedDark)
	countParticles(thresholdedDark, roimClosedPores, detectionParameters.closedPoresMinSize, detectionParameters.closedPoresMaxSize, \
		detectionParameters.closedPoresMinCircularity, detectionParameters.closedPoresMaxCircularity)

	# count number of open pores
	roimOpenPores = RoiManager(True)
	detectionParameters.setCalibration(thresholdedDark)
	countParticles(thresholdedDark, roimOpenPores, detectionParameters.openPoresMinSize, detectionParameters.openPoresMaxSize, \
		detectionParameters.openPoresMinCircularity, detectionParameters.openPoresMaxCircularity)

	# count number of sebum
	roimSebum = RoiManager(True)
	detectionParameters.setCalibration(thresholdedLight)
	countParticles(thresholdedLight, roimSebum, detectionParameters.sebumMinSize, detectionParameters.sebumMaxSize, \
		detectionParameters.sebumMinCircularity, detectionParameters.sebumMaxCircularity)
	
	# create lists for open and closed pores
	closedPoresList=[]
	for roi in roimClosedPores.getRoisAsArray():
		closedPoresList.append(roi.clone())
	openPoresList=[]
	for roi in roimOpenPores.getRoisAsArray():
		openPoresList.append(roi.clone())

	# create lists for sebum
	sebumsList=[]
	for roi in roimSebum.getRoisAsArray():
		sebumsList.append(roi.clone())

	# a list of all pores
	allList=closedPoresList+openPoresList+sebumsList
	
	# calculate the stats for all pores
	detectionParameters.setCalibration(bluePlus)
	statsDict=CountParticles.calculateParticleStats(bluePlus, allList)

	poresTotalArea=0
	for area in statsDict['Areas']:
		poresTotalArea=poresTotalArea+area
		print area
	poresAverageArea=poresTotalArea/len(statsDict['Areas'])
		

	# for each roi add the offset such that the roi is positioned in the correct location for the 
	# original image
	[roi.setLocation(roi.getXBase()+x1, roi.getYBase()+y1) for roi in allList]
	
	# draw the rois on the image
	inputImp.getProcessor().setColor(Color.green)
	IJ.run(inputImp, "Line Width...", "line=3");
	inputImp.getProcessor().draw(inputRoi)
	IJ.run(inputImp, "Line Width...", "line=1");
	[CountParticles.drawParticleOnImage(inputImp, roi, Color.red) for roi in closedPoresList]
	[CountParticles.drawParticleOnImage(inputImp, roi, Color.magenta) for roi in openPoresList]
	[CountParticles.drawParticleOnImage(inputImp, roi, Color.green) for roi in sebumsList]
	
	inputImp.updateAndDraw()
	
	# close images that represent intermediate steps
	croppedPlus.changes=False
	croppedPlus.close()
	bluePlus.changes=False
	bluePlus.close()

	print "Total ROI Area: "+str(inputRoiArea)
	print "Num closed pores: "+str(len(closedPoresList))
	print "Num open pores: "+str(len(openPoresList))
	print "Num sebums: "+str(len(sebumsList))
	
	print "Total particles: "+str(len(allList))+ " total area: "+str(poresTotalArea)
	
	statslist=[inputRoiArea, len(allList), len(closedPoresList), len(openPoresList), len(sebumsList), poresAverageArea, 100*poresTotalArea/inputRoiArea]
	header=[Messages.TotalAreaMask, Messages.TotalDetectedPores, Messages.ClosedPores, Messages.OpenPores, Messages.Sebum, Messages.PoresAverageArea, Messages.PoresFractionalArea]
	
	return header,statslist

	
コード例 #47
0
# set up first ROI manager
table1 = ResultsTable()
roim1 = RoiManager()
pa1 = ParticleAnalyzer(
    ParticleAnalyzer.ADD_TO_MANAGER,
    Measurements.AREA | Measurements.MEAN | Measurements.ELLIPSE, table1, 0,
    100, 0, 1)
pa1.setRoiManager(roim1)
pa1.analyze(imp)

# set up second ROI manager
table2 = ResultsTable()
# Pass true to second ROI manager so it will not be seen
roim2 = RoiManager(True)
pa2 = ParticleAnalyzer(
    ParticleAnalyzer.ADD_TO_MANAGER,
    Measurements.AREA | Measurements.MEAN | Measurements.ELLIPSE, table2, 100,
    500, 0, 1)
pa2.setRoiManager(roim2)
pa2.analyze(imp)

print "rois from first manager:"
for roi in roim1.getRoisAsArray():
    print roi

print
print "rois from second manager:"
for roi in roim2.getRoisAsArray():
    print roi