from ijcai15 import PersTour #algo = PersTour('./Osaka', 'userVisits-Osak.csv') #algo.recommend(0.0) #algo.recommend(0.5) #algo.recommend(0.5, time_based=False) #algo.recommend(1.0) #algo.recommend(1.0, time_based=False) #algo = PersTour('./Edinburgh', 'userVisits-Edin.csv') #algo.recommend(0.0) #algo.recommend(0.5) #algo.recommend(0.5, time_based=False) #algo.recommend(1.0) #algo.recommend(1.0, time_based=False) #algo = PersTour('./Glasgow', 'userVisits-Glas.csv') #algo.recommend(0.0) #algo.recommend(0.5) #algo.recommend(0.5, time_based=False) #algo.recommend(1.0) #algo.recommend(1.0, time_based=False) #algo = PersTour('./Toronto', 'userVisits-Toro.csv') algo = PersTour('./Toronto2', 'userVisits-Toro.csv') algo.recommend(0.0) #algo.recommend(0.5) #algo.recommend(0.5, time_based=False) #algo.recommend(1.0) #algo.recommend(1.0, time_based=False)
# for k in range(weights.shape[0]): # paramvec[l] = weights[k] # values[k] = calc_mean_F1score(ptobj, trainset, enumseqs_dict, scorevec_dict, scoremat, paramvec) # midx = values.argmax() # print('best F1-score:', values[midx], ', best weight:', weights[midx]) # paramvec[l] = weights[midx] #plt.scatter(np.linspace(-1, 1, 21), values, marker='+') plt.show() input('...') if __name__ == '__main__': dirname = './Edinburgh' basefilename = 'userVisits-Edin.csv' ptobj = PersTour(dirname, basefilename) ptobj.calc_metrics({x for x in range(len(ptobj.sequences))}) # train and test sequences #seqtrainset, seqtestset = gen_train_test_set(ptobj) #print(len(seqtrainset), len(seqtestset)) fname = 'train_test.set' seqtrainset, seqtestset = load_train_test_set(fname) #lengths = [] #for seq in seqtrainset: # lengths.append(len(ptobj.sequences[seq])) #plt.hist(lengths, bins=20) #plt.show() #input('...')