def web_model_results(dir_path): for noise in ['0.01', '0.05', '0.1']: for bottleneck in ['1', '2', '3', '4']: for exposures in ['1', '2', '3', '4']: figure_path = dir_path + '%s_%s_%s.svg' % (noise, bottleneck, exposures) model_results_sim = il_results.load( '../data/model_sim/1.0_%s_%s_%s.json' % (noise, bottleneck, exposures), start_gen=0, end_gen=50, method='lang') model_results_inf = il_results.load( '../data/model_inf/1.0_%s_%s_%s.json' % (noise, bottleneck, exposures), start_gen=0, end_gen=50, method='lang') model_results_inf_500 = il_results.load( '../data/model_inf/500.0_%s_%s_%s.json' % (noise, bottleneck, exposures), start_gen=0, end_gen=50, method='lang') il_results.make_figure( [(model_results_sim, 'Simplicity', colors.blue, colors.light_blue, '-'), (model_results_inf, 'Informativeness', colors.red, colors.light_red, '-'), (model_results_inf_500, 'Strong informativeness', colors.red, colors.light_red, ':')], figure_path=figure_path, show_legend=True)
def make_model_results_figure_carstensen(figure_path): model_results_sim_001 = il_results.load( '../data/model_sim/1.0_0.01_4_2.json', start_gen=0, end_gen=100, method='lang') model_results_sim_005 = il_results.load( '../data/model_sim/1.0_0.05_4_2.json', start_gen=0, end_gen=100, method='lang') model_results_sim_010 = il_results.load( '../data/model_sim/1.0_0.1_4_2.json', start_gen=0, end_gen=100, method='lang') il_results.make_carstensen_figure([ (model_results_sim_001, 'ε = .01', colors.blue, colors.light_blue, '-'), (model_results_sim_005, 'ε = .05', colors.blue, colors.light_blue, '--'), (model_results_sim_010, 'ε = .1', colors.blue, colors.light_blue, ':') ], figure_path=figure_path, figsize=(3.46, 1.75))
def make_model_comparison_figure(figure_path): experiment_results = il_results.load('../data/experiments/exp2_chains.json', start_gen=0, end_gen=10, method='prod') experiment_results_est = il_results.load('../data/experiments/exp2_chains.json', start_gen=10, end_gen=50, method='prod') model_results_sim = il_results.load('../data/model_sim/1.36_0.23_2_4.json', start_gen=0, end_gen=50, method='lang') model_results_inf = il_results.load('../data/model_inf/243.3_0.37_2_4.json', start_gen=0, end_gen=50, method='lang') il_results.make_figure([(experiment_results, 'Experimental results', colors.black, colors.light_black, '-'), (experiment_results_est, '', colors.black, colors.light_black, ':'), (model_results_sim, 'Simplicity prior (using best-fit parameters)', colors.blue, colors.light_blue, '-'), (model_results_inf, 'Informativeness prior (using best-fit parameters)', colors.red, colors.light_red, '-')], figure_path=figure_path, show_legend=True)
def make_model_results_figure(figure_path): model_results_sim = il_results.load( '../data/test_modelfit/model/results.json', start_gen=0, end_gen=10, method='lang') dataset = (model_results_sim, 'Simplicity', colors.blue, colors.light_blue, '-') opt = load_optimizer('../data/test_modelfit/modelfit/result') make_figure(dataset, opt, figure_path=figure_path, n_levels=32)
def supplementary_model_results(dir_path): il_results.figure_layout = [['expressivity', 'complexity'], ['cost', 'error']] il_results.plt.rcParams.update({'font.size': 10}) for e, noise in enumerate(['0.01', '0.05', '0.1'], 1): for b, bottleneck in enumerate(['1', '2', '3', '4'], 1): for x, exposures in enumerate(['1', '2', '3', '4'], 1): figure_path = dir_path + '%i%i%i.pdf' % (b, x, e) title = 'b = %s, ξ = %s, ε = %s' % (bottleneck, exposures, noise) model_results_sim = il_results.load( '../data/model_sim/1.0_%s_%s_%s.json' % (noise, bottleneck, exposures), start_gen=0, end_gen=50, method='lang') model_results_inf = il_results.load( '../data/model_inf/1.0_%s_%s_%s.json' % (noise, bottleneck, exposures), start_gen=0, end_gen=50, method='lang') model_results_inf_500 = il_results.load( '../data/model_inf/500.0_%s_%s_%s.json' % (noise, bottleneck, exposures), start_gen=0, end_gen=50, method='lang') il_results.make_figure( [(model_results_sim, 'Simplicity prior (πsim, w = 1)', colors.blue, colors.light_blue, '-'), (model_results_inf, 'Informativeness prior (πinf, w = 1)', colors.red, colors.light_red, '-'), (model_results_inf_500, 'Strong informativeness prior (πinf, w = 500)', colors.red, colors.light_red, ':')], figure_path=figure_path, title=title, show_legend=True, deep_legend=True)
def make_model_results_figure(figure_path): model_results_sim = il_results.load('../data/model_sim/1.0_0.01_2_2.json', start_gen=0, end_gen=50, method='lang') model_results_inf = il_results.load('../data/model_inf/1.0_0.01_2_2.json', start_gen=0, end_gen=50, method='lang') model_results_inf_500 = il_results.load( '../data/model_inf/500.0_0.01_2_2.json', start_gen=0, end_gen=50, method='lang') il_results.make_figure( [(model_results_sim, 'Simplicity prior', colors.blue, colors.light_blue, '-'), (model_results_inf, 'Informativeness prior', colors.red, colors.light_red, '-'), (model_results_inf_500, 'Strong informativeness prior', colors.red, colors.light_red, ':')], figure_path=figure_path, show_legend=True)
def thesis_appendix_model_results(dir_path): for b, bottleneck in enumerate(['1', '2', '3', '4'], 1): for x, exposures in enumerate(['1', '2', '3', '4'], 1): for e, noise in enumerate(['0.01', '0.05', '0.1'], 1): figure_path = dir_path + '%i%i%i.eps' % (b, x, e) title = 'b = %s, ξ = %s, ε = %s' % (bottleneck, exposures, noise) model_results_sim = il_results.load( '../data/model_sim/1.0_%s_%s_%s.json' % (noise, bottleneck, exposures), start_gen=0, end_gen=50, method='lang') model_results_inf = il_results.load( '../data/model_inf/1.0_%s_%s_%s.json' % (noise, bottleneck, exposures), start_gen=0, end_gen=50, method='lang') model_results_inf_500 = il_results.load( '../data/model_inf/500.0_%s_%s_%s.json' % (noise, bottleneck, exposures), start_gen=0, end_gen=50, method='lang') il_results.make_figure( [(model_results_sim, 'Simplicity prior (πsim, w = 1)', colors.blue, colors.light_blue, '-'), (model_results_inf, 'Informativeness prior (πinf, w = 1)', colors.red, colors.light_red, '-'), (model_results_inf_500, 'Strong informativeness prior (πinf, w = 500)', colors.red, colors.light_red, ':')], figure_path=figure_path, title=title, show_legend=False, figsize=(5.1, 2.8))
def make_experiment_results_figure(figure_path): experiment_results = il_results.load('../data/experiments/exp2_chains.json', start_gen=0, end_gen=10, method='prod') il_results.make_figure([(experiment_results, 'Experiment', colors.black, colors.light_black, '-')], figure_path=figure_path, show_legend=False)