コード例 #1
0
    def __init__(self, block_roi, halo_padding, *args, **kwargs):
        super(self.__class__, self).__init__(*args, **kwargs)

        self.block_roi = block_roi  # In global coordinates
        self._halo_padding = halo_padding

        self._opBinarySubRegion = OpSubRegion(parent=self)
        self._opBinarySubRegion.Input.connect(self.BinaryImage)

        self._opRawSubRegion = OpSubRegion(parent=self)
        self._opRawSubRegion.Input.connect(self.RawImage)

        self._opExtract = OpObjectExtraction(parent=self)
        self._opExtract.BinaryImage.connect(self._opBinarySubRegion.Output)
        self._opExtract.RawImage.connect(self._opRawSubRegion.Output)
        self._opExtract.Features.connect(self.SelectedFeatures)
        self.BlockwiseRegionFeatures.connect(
            self._opExtract.BlockwiseRegionFeatures)

        self._opPredict = OpObjectPredict(parent=self)
        self._opPredict.Features.connect(self._opExtract.RegionFeatures)
        self._opPredict.SelectedFeatures.connect(self.SelectedFeatures)
        self._opPredict.Classifier.connect(self.Classifier)
        self._opPredict.LabelsCount.connect(self.LabelsCount)

        self._opPredictionImage = OpRelabelSegmentation(parent=self)
        self._opPredictionImage.Image.connect(self._opExtract.LabelImage)
        self._opPredictionImage.Features.connect(
            self._opExtract.RegionFeatures)
        self._opPredictionImage.ObjectMap.connect(self._opPredict.Predictions)
コード例 #2
0
    def __init__(self, block_roi, halo_padding, *args, **kwargs):
        super(self.__class__, self).__init__(*args, **kwargs)

        self.block_roi = block_roi  # In global coordinates
        self._halo_padding = halo_padding

        self._opBinarySubRegion = OpSubRegion(parent=self)
        self._opBinarySubRegion.Input.connect(self.BinaryImage)

        self._opRawSubRegion = OpSubRegion(parent=self)
        self._opRawSubRegion.Input.connect(self.RawImage)

        self._opExtract = OpObjectExtraction(parent=self)
        self._opExtract.BinaryImage.connect(self._opBinarySubRegion.Output)
        self._opExtract.RawImage.connect(self._opRawSubRegion.Output)
        self._opExtract.Features.connect(self.SelectedFeatures)
        self.BlockwiseRegionFeatures.connect(
            self._opExtract.BlockwiseRegionFeatures)

        self._opExtract._opRegFeats._opCache.name = "blockwise-regionfeats-cache"

        self._opPredict = OpObjectPredict(parent=self)
        self._opPredict.Features.connect(self._opExtract.RegionFeatures)
        self._opPredict.SelectedFeatures.connect(self.SelectedFeatures)
        self._opPredict.Classifier.connect(self.Classifier)
        self._opPredict.LabelsCount.connect(self.LabelsCount)
        self.ObjectwisePredictions.connect(self._opPredict.Predictions)

        self._opPredictionImage = OpRelabelSegmentation(parent=self)
        self._opPredictionImage.Image.connect(self._opExtract.LabelImage)
        self._opPredictionImage.Features.connect(
            self._opExtract.RegionFeatures)
        self._opPredictionImage.ObjectMap.connect(self._opPredict.Predictions)

        self._opPredictionCache = OpArrayCache(parent=self)
        self._opPredictionCache.Input.connect(self._opPredictionImage.Output)

        self._opProbabilityChannelsToImage = OpMultiRelabelSegmentation(
            parent=self)
        self._opProbabilityChannelsToImage.Image.connect(
            self._opExtract.LabelImage)
        self._opProbabilityChannelsToImage.ObjectMaps.connect(
            self._opPredict.ProbabilityChannels)
        self._opProbabilityChannelsToImage.Features.connect(
            self._opExtract.RegionFeatures)

        self._opProbabilityChannelStacker = OpMultiArrayStacker(parent=self)
        self._opProbabilityChannelStacker.Images.connect(
            self._opProbabilityChannelsToImage.Output)
        self._opProbabilityChannelStacker.AxisFlag.setValue('c')

        self._opProbabilityCache = OpArrayCache(parent=self)
        self._opProbabilityCache.Input.connect(
            self._opProbabilityChannelStacker.Output)
コード例 #3
0
ファイル: testOperators.py プロジェクト: nagyist/ilastik
 def setUp(self):
     g = Graph()
     self.op = OpRelabelSegmentation(graph=g)
コード例 #4
0
class OpSingleBlockObjectPrediction(Operator):
    RawImage = InputSlot()
    BinaryImage = InputSlot()

    SelectedFeatures = InputSlot(rtype=List, stype=Opaque)

    Classifier = InputSlot()
    LabelsCount = InputSlot()

    PredictionImage = OutputSlot()
    BlockwiseRegionFeatures = OutputSlot()  # Indexed by (t,c)

    # Schematic:
    #
    # RawImage -----> opRawSubRegion ------                        _______________________
    #                                      \                      /                       \
    # BinaryImage --> opBinarySubRegion --> opExtract --(features)--> opPredict --(map)--> opPredictionImage --via execute()--> PredictionImage
    #                                      /         \               /                    /
    #                 SelectedFeatures-----           \   Classifier                     /
    #                                                  \                                /
    #                                                   (labels)------------------------

    # +----------------------------------------------------------------+
    # | input_shape = RawImage.meta.shape                              |
    # |                                                                |
    # |                                                                |
    # |                                                                |
    # |                                                                |
    # |                                                                |
    # |                                                                |
    # |                    halo_shape = blockshape + 2*halo_padding    |
    # |                    +------------------------+                  |
    # |                    | halo_roi               |                  |
    # |                    | (for internal pipeline)|                  |
    # |                    |                        |                  |
    # |                    |  +------------------+  |                  |
    # |                    |  | block_roi        |  |                  |
    # |                    |  | (output shape)   |  |                  |
    # |                    |  |                  |  |                  |
    # |                    |  |                  |  |                  |
    # |                    |  |                  |  |                  |
    # |                    |  +------------------+  |                  |
    # |                    |                        |                  |
    # |                    |                        |                  |
    # |                    |                        |                  |
    # |                    +------------------------+                  |
    # |                                                                |
    # |                                                                |
    # |                                                                |
    # |                                                                |
    # |                                                                |
    # |                                                                |
    # |                                                                |
    # +----------------------------------------------------------------+

    def __init__(self, block_roi, halo_padding, *args, **kwargs):
        super(self.__class__, self).__init__(*args, **kwargs)

        self.block_roi = block_roi  # In global coordinates
        self._halo_padding = halo_padding

        self._opBinarySubRegion = OpSubRegion(parent=self)
        self._opBinarySubRegion.Input.connect(self.BinaryImage)

        self._opRawSubRegion = OpSubRegion(parent=self)
        self._opRawSubRegion.Input.connect(self.RawImage)

        self._opExtract = OpObjectExtraction(parent=self)
        self._opExtract.BinaryImage.connect(self._opBinarySubRegion.Output)
        self._opExtract.RawImage.connect(self._opRawSubRegion.Output)
        self._opExtract.Features.connect(self.SelectedFeatures)
        self.BlockwiseRegionFeatures.connect(
            self._opExtract.BlockwiseRegionFeatures)

        self._opPredict = OpObjectPredict(parent=self)
        self._opPredict.Features.connect(self._opExtract.RegionFeatures)
        self._opPredict.SelectedFeatures.connect(self.SelectedFeatures)
        self._opPredict.Classifier.connect(self.Classifier)
        self._opPredict.LabelsCount.connect(self.LabelsCount)

        self._opPredictionImage = OpRelabelSegmentation(parent=self)
        self._opPredictionImage.Image.connect(self._opExtract.LabelImage)
        self._opPredictionImage.Features.connect(
            self._opExtract.RegionFeatures)
        self._opPredictionImage.ObjectMap.connect(self._opPredict.Predictions)

    def setupOutputs(self):
        tagged_input_shape = self.RawImage.meta.getTaggedShape()
        self._halo_roi = self.computeHaloRoi(
            tagged_input_shape, self._halo_padding,
            self.block_roi)  # In global coordinates

        # Output roi in our own coordinates (i.e. relative to the halo start)
        self._output_roi = self.block_roi - self._halo_roi[0]

        halo_start, halo_stop = map(tuple, self._halo_roi)

        self._opRawSubRegion.Start.setValue(halo_start)
        self._opRawSubRegion.Stop.setValue(halo_stop)

        # Binary image has only 1 channel.  Adjust halo subregion.
        assert self.BinaryImage.meta.getTaggedShape()['c'] == 1
        c_index = self.BinaryImage.meta.axistags.channelIndex
        binary_halo_roi = numpy.array(self._halo_roi)
        binary_halo_roi[:, c_index] = (0, 1)  # Binary has only 1 channel.
        binary_halo_start, binary_halo_stop = map(tuple, binary_halo_roi)

        self._opBinarySubRegion.Start.setValue(binary_halo_start)
        self._opBinarySubRegion.Stop.setValue(binary_halo_stop)

        self.PredictionImage.meta.assignFrom(
            self._opPredictionImage.Output.meta)
        self.PredictionImage.meta.shape = tuple(
            numpy.subtract(self.block_roi[1], self.block_roi[0]))

        # Forward dirty regions to our own output
        self._opPredictionImage.Output.notifyDirty(self._handleDirtyPrediction)

    def execute(self, slot, subindex, roi, destination):
        assert slot == self.PredictionImage, "Unknown input slot"
        assert (numpy.array(roi.stop) <=
                self.PredictionImage.meta.shape).all(), "Roi is out-of-bounds"

        # Extract from the output (discard halo)
        halo_offset = numpy.subtract(self.block_roi[0], self._halo_roi[0])
        adjusted_roi = (halo_offset + roi.start, halo_offset + roi.stop)
        return self._opPredictionImage.Output(
            *adjusted_roi).writeInto(destination).wait()

    def propagateDirty(self, slot, subindex, roi):
        """
        Nothing to do here because dirty notifications are propagated 
        through our internal pipeline and forwarded to our output via 
        our notifyDirty handler.
        """
        pass

    def _handleDirtyPrediction(self, slot, roi):
        """
        Foward dirty notifications from our internal output slot to the external one,
        but first discard the halo and offset the roi to compensate for the halo.
        """
        # Discard halo.  dirtyRoi is in internal coordinates (i.e. relative to halo start)
        dirtyRoi = getIntersection((roi.start, roi.stop),
                                   self._output_roi,
                                   assertIntersect=False)
        if dirtyRoi is not None:
            halo_offset = numpy.subtract(self.block_roi[0], self._halo_roi[0])
            adjusted_roi = dirtyRoi - halo_offset  # adjusted_roi is in output coordinates (relative to output block start)
            self.PredictionImage.setDirty(*adjusted_roi)

    @classmethod
    def computeHaloRoi(cls, tagged_dataset_shape, halo_padding, block_roi):
        block_roi = numpy.array(block_roi)
        block_start, block_stop = block_roi

        channel_index = tagged_dataset_shape.keys().index('c')
        block_start[channel_index] = 0
        block_stop[channel_index] = tagged_dataset_shape['c']

        # Compute halo and clip to dataset bounds
        halo_start = block_start - halo_padding
        halo_start = numpy.maximum(halo_start, (0, ) * len(halo_start))

        halo_stop = block_stop + halo_padding
        halo_stop = numpy.minimum(halo_stop, tagged_dataset_shape.values())

        halo_roi = (halo_start, halo_stop)
        return halo_roi