コード例 #1
0
    def create_new_tst_project(cls):
        # Instantiate 'shell'
        shell = HeadlessShell(  )
        
        # Create a blank project file and load it.
        newProjectFilePath = cls.PROJECT_FILE
        newProjectFile = ProjectManager.createBlankProjectFile(newProjectFilePath, PixelClassificationWorkflow, [])
        newProjectFile.close()
        shell.openProjectFile(newProjectFilePath)
        workflow = shell.workflow
        
        # Add a file
        from ilastik.applets.dataSelection.opDataSelection import DatasetInfo
        info = DatasetInfo()
        info.filePath = cls.SAMPLE_DATA
        opDataSelection = workflow.dataSelectionApplet.topLevelOperator
        opDataSelection.DatasetGroup.resize(1)
        opDataSelection.DatasetGroup[0][0].setValue(info)
        
        
        # Set some features
        ScalesList = [0.3, 0.7, 1, 1.6, 3.5, 5.0, 10.0]    
        FeatureIds = [ 'GaussianSmoothing',
                       'LaplacianOfGaussian',
                       'StructureTensorEigenvalues',
                       'HessianOfGaussianEigenvalues',
                       'GaussianGradientMagnitude',
                       'DifferenceOfGaussians' ]

        opFeatures = workflow.featureSelectionApplet.topLevelOperator
        opFeatures.Scales.setValue( ScalesList )
        opFeatures.FeatureIds.setValue( FeatureIds )

        #                    sigma:   0.3    0.7    1.0    1.6    3.5    5.0   10.0
        selections = numpy.array( [[True, False, False, False, False, False, False],
                                   [True, False, False, False, False, False, False],
                                   [True, False, False, False, False, False, False],
                                   [False, False, False, False, False, False, False],
                                   [False, False, False, False, False, False, False],
                                   [False, False, False, False, False, False, False]] )
        opFeatures.SelectionMatrix.setValue(selections)
    
        # Add some labels directly to the operator
        opPixelClass = workflow.pcApplet.topLevelOperator

        opPixelClass.LabelNames.setValue(['Label 1', 'Label 2'])

        slicing1 = sl[0:1,0:10,0:10,0:1,0:1]
        labels1 = 1 * numpy.ones(slicing2shape(slicing1), dtype=numpy.uint8)
        opPixelClass.LabelInputs[0][slicing1] = labels1

        slicing2 = sl[0:1,0:10,10:20,0:1,0:1]
        labels2 = 2 * numpy.ones(slicing2shape(slicing2), dtype=numpy.uint8)
        opPixelClass.LabelInputs[0][slicing2] = labels2

        # Save and close
        shell.projectManager.saveProject()
        del shell
コード例 #2
0
    def create_new_tst_project(cls):
        # Instantiate 'shell'
        shell = HeadlessShell()

        # Create a blank project file and load it.
        newProjectFilePath = cls.PROJECT_FILE
        newProjectFile = ProjectManager.createBlankProjectFile(
            newProjectFilePath, PixelClassificationWorkflow, [])
        newProjectFile.close()
        shell.openProjectFile(newProjectFilePath)
        workflow = shell.workflow

        # Add a file
        from ilastik.applets.dataSelection.opDataSelection import DatasetInfo
        info = DatasetInfo()
        info.filePath = cls.SAMPLE_DATA
        opDataSelection = workflow.dataSelectionApplet.topLevelOperator
        opDataSelection.DatasetGroup.resize(1)
        opDataSelection.DatasetGroup[0][0].setValue(info)

        # Set some features
        ScalesList = [0.3, 0.7, 1, 1.6, 3.5, 5.0, 10.0]
        FeatureIds = [
            'GaussianSmoothing', 'LaplacianOfGaussian',
            'StructureTensorEigenvalues', 'HessianOfGaussianEigenvalues',
            'GaussianGradientMagnitude', 'DifferenceOfGaussians'
        ]

        opFeatures = workflow.featureSelectionApplet.topLevelOperator
        opFeatures.Scales.setValue(ScalesList)
        opFeatures.FeatureIds.setValue(FeatureIds)

        #                    sigma:   0.3    0.7    1.0    1.6    3.5    5.0   10.0
        selections = numpy.array(
            [[True, False, False, False, False, False, False],
             [True, False, False, False, False, False, False],
             [True, False, False, False, False, False, False],
             [False, False, False, False, False, False, False],
             [False, False, False, False, False, False, False],
             [False, False, False, False, False, False, False]])
        opFeatures.SelectionMatrix.setValue(selections)

        # Add some labels directly to the operator
        opPixelClass = workflow.pcApplet.topLevelOperator

        slicing1 = sl[0:1, 0:10, 0:10, 0:1, 0:1]
        labels1 = 1 * numpy.ones(slicing2shape(slicing1), dtype=numpy.uint8)
        opPixelClass.LabelInputs[0][slicing1] = labels1

        slicing2 = sl[0:1, 0:10, 10:20, 0:1, 0:1]
        labels2 = 2 * numpy.ones(slicing2shape(slicing2), dtype=numpy.uint8)
        opPixelClass.LabelInputs[0][slicing2] = labels2

        # Save and close
        shell.projectManager.saveProject()
        del shell
コード例 #3
0
    def create_new_project(cls, project_file_path, dataset_path):
        # Instantiate 'shell'
        shell = HeadlessShell()

        # Create a blank project file and load it.
        newProjectFile = ProjectManager.createBlankProjectFile(project_file_path, PixelClassificationWorkflow, [])
        newProjectFile.close()
        shell.openProjectFile(project_file_path)
        workflow = shell.workflow

        # Add a file
        from ilastik.applets.dataSelection.opDataSelection import FilesystemDatasetInfo

        info = FilesystemDatasetInfo(filePath=dataset_path)
        opDataSelection = workflow.dataSelectionApplet.topLevelOperator
        opDataSelection.DatasetGroup.resize(1)
        opDataSelection.DatasetGroup[0][0].setValue(info)

        # Set some features
        ScalesList = [0.3, 0.7, 1, 1.6, 3.5, 5.0, 10.0]
        FeatureIds = [
            "GaussianSmoothing",
            "LaplacianOfGaussian",
            "StructureTensorEigenvalues",
            "HessianOfGaussianEigenvalues",
            "GaussianGradientMagnitude",
            "DifferenceOfGaussians",
        ]

        opFeatures = workflow.featureSelectionApplet.topLevelOperator
        opFeatures.Scales.setValue(ScalesList)
        opFeatures.FeatureIds.setValue(FeatureIds)

        #                    sigma:   0.3    0.7    1.0    1.6    3.5    5.0   10.0
        selections = numpy.array(
            [
                [True, False, False, False, False, False, False],
                [True, False, False, False, False, False, False],
                [True, False, False, False, False, False, False],
                [False, False, False, False, False, False, False],
                [False, False, False, False, False, False, False],
                [False, False, False, False, False, False, False],
            ]
        )
        opFeatures.SelectionMatrix.setValue(selections)

        # Add some labels directly to the operator
        opPixelClass = workflow.pcApplet.topLevelOperator

        opPixelClass.LabelNames.setValue(["Label 1", "Label 2"])

        slicing1 = sl[0:1, 0:10, 0:10, 0:1, 0:1]
        labels1 = 1 * numpy.ones(slicing2shape(slicing1), dtype=numpy.uint8)
        opPixelClass.LabelInputs[0][slicing1] = labels1

        slicing2 = sl[0:1, 0:10, 10:20, 0:1, 0:1]
        labels2 = 2 * numpy.ones(slicing2shape(slicing2), dtype=numpy.uint8)
        opPixelClass.LabelInputs[0][slicing2] = labels2

        # Train the classifier
        opPixelClass.FreezePredictions.setValue(False)
        _ = opPixelClass.Classifier.value

        # Save and close
        shell.projectManager.saveProject()
        del shell