コード例 #1
0
def smooth(image):
	print "smooth: "+str(image[:10])
	if image[0]=="P3":
		import color2grayscale
		image=color2grayscale.color2grayscale(image)
	print "smooth: "+str(image[:10])
	file2=image[:]
	#first line=P2
	#second line=comment
	width=int(image[1])
	height=int(image[2])
	count=0
	for x in range(1,width-1):
		for y in range(1,height-1):
			file2[width*y+x+4]=int((1*getpixel(x-1,y-1,image)+2*getpixel(x,y-1,image)+1*getpixel(x+1,y-1,image)+2*getpixel(x-1,y,image)+4*getpixel(x,y,image)+2*getpixel(x+1,y,image)+1*getpixel(x-1,y+1,image)+2*getpixel(x,y+1,image)+1*getpixel(x+1,y+1,image))/16)
	return file2
コード例 #2
0
def floodfill(image):
	oldimage=image
	width=int(image[1])
	height=int(image[2])
	count=0
	#loop through all non-edge pixels
	for x in range(1,width-1):
		for y in range(1,height-1):
			if getpixel(x,y,image)==255:
				image[width*y+x+4]=0
				image=fill(x,y,image)
	pixelsum=width*height
	return image
コード例 #3
0
def edgedetect(image):
    print image[:10]
    tvals = image[:]
    hg = image[:]
    vg = image[:]
    theta = image[:]
    global pixelsum, pixelcount
    oldimage = image
    if image[0] == "P3":
        # converts file to grayscale and smoothes it
        import smooth

        image = smooth.smooth(image)
    print image[:10]
    file2 = oldimage[:]
    width = int(image[1])
    height = int(image[2])
    count = 0
    # loop through all non-edge pixels
    for x in range(1, width - 1):
        for y in range(1, height - 1):
            # calculate the horizontal gradient of the current pixel
            hg[width * y + x + 4] = int(
                -1 * getpixel(x - 1, y - 1, image)
                + 0 * getpixel(x, y - 1, image)
                + 1 * getpixel(x + 1, y - 1, image)
                - 2 * getpixel(x - 1, y, image)
                + 0 * getpixel(x, y, image)
                + 2 * getpixel(x + 1, y, image)
                - 1 * getpixel(x - 1, y + 1, image)
                + 0 * getpixel(x, y + 1, image)
                + 1 * getpixel(x + 1, y + 1, image)
            )
            # calculate the vertical gradient of the current pixel
            vg[width * y + x + 4] = int(
                1 * getpixel(x - 1, y - 1, image)
                + 2 * getpixel(x, y - 1, image)
                + 1 * getpixel(x + 1, y - 1, image)
                + 0 * getpixel(x - 1, y, image)
                + 0 * getpixel(x, y, image)
                + 0 * getpixel(x + 1, y, image)
                - 1 * getpixel(x - 1, y + 1, image)
                - 2 * getpixel(x, y + 1, image)
                - 1 * getpixel(x + 1, y + 1, image)
            )
            # store the threshold value
            tvals[width * y + x + 4] = abs(hg[width * y + x + 4]) + abs(vg[width * y + x + 4])
            theta[width * y + x + 4] = float(atan2(-vg[width * y + x + 4], hg[width * y + x + 4]))
            # if the threshold is reached, mark the pixel
    for x in range(1, width - 1):
        for y in range(1, height - 1):
            if int(tvals[width * y + x + 4]) >= hthreshold:
                fill(x, y, file2, tvals, theta, lthreshold)

    pixelsum = width * height
    return file2