コード例 #1
0
def main():


    LANDMARKS_MODEL_URL = 'http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2'
    face_list = cp.run(LANDMARKS_MODEL_URL)

    file_list = os.listdir("./pytorch_stylegan_encoder/aligned_images")
    print(file_list)

    name_list = []
    for name in file_list:
        name_list.append(name)

    #npyfile_list = os.listdir("./npysave/")
    #print(npyfile_list)
    #npy_list = []
    #for name in npyfile_list:
    #    npy_list.append(name)
    for i in range(len(name_list)) :
        print(i," ",len(name_list))
        args.image_path = "./pytorch_stylegan_encoder/aligned_images/"+name_list[i]
        print(args.image_path)
        args.dlatent_path="./npysave/unknown"+str(i+1)+".npy"
        print("args.dlatent_path",args.dlatent_path)
        optimize_latents()
        main_edit(args.dlatent_path, i)
コード例 #2
0
ファイル: main.py プロジェクト: leosantosx/bot-para-telegram
def handle(msg):
    content_type, chat_type, chat_id = telepot.glance(msg)
    if content_type == 'text':        
        text = msg['text'].upper().strip()
        
        if text.startswith('/START') :
            bot.sendMessage(chat_id, '*Digite:*\n /comandos - para ver comandos' , parse_mode='Markdown')
            
        if text.startswith('/COMANDOS'):
            comandos = "🛠 *Lista de Comandos*\n\n• *FOTOS:* /fotos baixar imagens\n\n• *IP:* /find - Consultar ip\n\n• *BIN:* /bin - consultar uma bin\n\n• *TR:* /tr traduzir um texto"
            bot.sendMessage(chat_id, comandos,  parse_mode= 'Markdown') 
            
        if text.startswith('/MEME'):
            image = PegarPost() 
            bot.sendPhoto(chat_id, image)
            
        if text.startswith('/FIND'):
            try:
                ip = text[6:]          
                if ip and '@DARKMINE' not in text:                
                    locap = locapIp(ip)
                    bot.sendMessage(chat_id, locap[0],  parse_mode= 'Markdown')                    
                    bot.sendPhoto(chat_id, locap[1], '@Darkmine_bot')
                else:
                    data = '*Ip Location* - Localizar IP ou Site\n\nFormato:\n/ip ip ou hostname' 
                    bot.sendMessage(chat_id, data,  parse_mode= 'Markdown') 
            except Exception as erro:
                print(erro) 
                data = '*Endereço de IP inválido!*'
                bot.sendMessage(chat_id, data,  parse_mode= 'Markdown') 
                      
        if text.startswith('/BIN'):
            resp = BinChecker(text) 
            bot.sendMessage(chat_id, resp, parse_mode= 'Markdown')
            
            
        if text.startswith('/TR'):
            texto = text[4:]
            if texto and '@DARKMINE' not in text:           
                resp = traduzirTexto(texto)
            else:
                resp = "*Modo de uso:*\n\n /tr *Texto* - Para fazer a tradução de algum texto"
            bot.sendMessage(chat_id, resp, parse_mode= 'Markdown')    
        
              
        if text.startswith('/ID'):
            nome = msg['from']['first_name']
            user = msg['from']['username'] 
            resp = 'Nome: {}\nUsuário: @{}\nId: {}'.format(nome, user, chat_id)
            bot.sendMessage(chat_id,resp)
                    
        if text.startswith('/FOTOS'):
            if text[7:] and '@DARKMINE' not in text:
                text = text[7:].split(' ')
                num = int(text[len(text) - 1]) 
                query = '+'.join(text[0:len(text)-1])
                lista = run(query, num) 
                for line in lista:
                    if line == lista[len(lista) - 1]:
                        bot.sendPhoto(chat_id, line, '@Darkmine_bot') 
                    else:
                        bot.sendPhoto(chat_id, line) 
            else:
                resp = "*Modo de uso:*\n\n/fotos *busca* *quantidade*\n\nEx: /fotos bolsonaro 5"
                bot.sendMessage(chat_id, resp, parse_mode='Markdown') 
コード例 #3
0
        data.x = F.elu(self.conv1(data.x, data.edge_index, data.edge_attr))
        weight = normalized_cut_2d(data.edge_index, data.pos)
        cluster = graclus(data.edge_index, weight, data.x.size(0))
        data.edge_attr = None
        data = max_pool(cluster, data, transform=T.Cartesian(cat=False))

        data.x = F.elu(self.conv2(data.x, data.edge_index, data.edge_attr))
        weight = normalized_cut_2d(data.edge_index, data.pos)
        cluster = graclus(data.edge_index, weight, data.x.size(0))
        data = max_pool(cluster, data, transform=T.Cartesian(cat=False))

        data.x = F.elu(self.conv3(data.x, data.edge_index, data.edge_attr))

        x = global_mean_pool(data.x, data.batch)
        x = F.elu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        return F.log_softmax(self.fc2(x), dim=1)


model = MoNet(args.kernel_size).to(device)
optimizer = torch.optim.Adam(model.parameters(),
                             lr=args.lr,
                             weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                            args.decay_step,
                                            gamma=args.lr_decay)
print(model)

run(model, args.epochs, train_loader, test_loader, optimizer, scheduler,
    device)
コード例 #4
0
from pathlib import Path

import cv2

from image import run

path = Path(__file__).parents[1] / 'puzzles/'

for filename in path.iterdir():
    img = cv2.imread(str(filename.resolve()))
    if img.shape[0] > 2000:
        img = cv2.resize(img, (500, 700))
    run(img)
コード例 #5
0
def deconstruct_image(image):


def reconstruct_image():
	return 0

tf.set_random_seed(1)
np.random.seed(1)


zzz = image.run()
# print(color_intensities)

# zzz = [ 3.45591175,  4.21306292,  1.39260529,  0.79979209,  2.80560091,  1.07702818,
#   1.13857619,  2.06239613,  1.01650569,  2.74965652,  2.89521513,  1.78206757,
#   3.03480862,  1.155502,    0.84656923,  0.94706706,  1.30763502, 14.22199015,
#   1.01494266,  0.82881535,  1.20278014,  2.6748784,   1.52933522,  0.93917355]



# gradient descent
# -1/1 8 0.1 : 0.002077
# -1/1 8 0.5 : 0.001934 then waver up and down
# -1/1 8 0.8 : 
# -1/1 8 1.0 : 12.37966 .....

# adamoptimizer
# -1/1 10 0.1 : 0.022
# -1/1 10 0.001 : 0. 001126
# -1/1 10 0.0005 : 0. 0011261

# -1/1 16 0.0005 : 0.001918

# -1/1 20 0.001 : 0.001126
# -1/1 20 0.0005 : 0.000765
# -1/1 20 0.0001 : 0.0007651
# -1/1 25 0.00005 : 0.0007651

# 0/1 20 0.0001 : 0.0168
# -2/1 20 0.0001 : 0.0008762


# -0.5/0.5 20 0.0001 : 0.00109

# -2.0/2.0 20 0.0001 : 0.0016359

# -1/1 25 0.0005 : 0.0016355
# -1/1 30 0.0005 : 0.0016355

color_intensities = zzz / np.linalg.norm(zzz)

# image -> color intensity 

# provided color_intensity -> avg of your color intensities

# e



# fake data
x = np.linspace(-1.0, 1.0, 25)[:, np.newaxis]        # shape (100, 1)
# noise = np.random.normal(0, 0.1, size=x.shape)
y = np.asarray(color_intensities)
y.shape=(25,1)                       # shape (100, 1) + some noise

# plot data
# plt.scatter(x, y)
# plt.show()

tf_x = tf.placeholder(tf.float32, x.shape)     # input x
tf_y = tf.placeholder(tf.float32, y.shape)     # input y

# neural network layers
l1 = tf.layers.dense(tf_x, 20, tf.nn.relu)          # hidden layer
output = tf.layers.dense(l1, 1)                     # output layer

# step = tf.Variable(0, trainable=False)
# rate = tf.train.exponential_decay(0.0005, step, 1, 0.9999)

loss = tf.losses.mean_squared_error(tf_y, output)   # compute cost
optimizer = tf.train.AdamOptimizer(0.0005)
train_op = optimizer.minimize(loss)

sess = tf.Session()                                 # control training and others
sess.run(tf.global_variables_initializer())         # initialize var in graph

plt.ioff()   # something about plotting

for step in range(25000):
	# train and net output
	_, l, pred = sess.run([train_op, loss, output], {tf_x: x, tf_y: y})
	if step % 1000 == 0:
		# plot and show learning process
		# plt.cla()
		# plt.scatter(x, y)
		# plt.plot(x, pred, 'r-', lw=5)
		# plt.text(0.5, 0, 'Loss=%.4f' % l, fontdict={'size': 20, 'color': 'red'})
		# plt.pause(1.0)
		# plt.text(0.5, 0, 'Loss=%.4f' % l, fontdict={'size': 20, 'color': 'red'})
		# plt.show()
		print('Loss=%.12f' % l)

tvars = tf.trainable_variables()
tvars_vals = sess.run(tvars)

for var, val in zip(tvars, tvars_vals):
    print(var.name, val)  # Prints the name of the variable alongside its value.

# print(output.numpy())

plt.scatter(x, y)
plt.plot(x, pred, 'r-', lw=2)
plt.text(0.5, 0, 'Loss=%.6f' % l, fontdict={'size': 20, 'color': 'red'})
plt.pause(1.0)
plt.text(0.5, 0, 'Loss=%.6f' % l, fontdict={'size': 20, 'color': 'red'})
plt.show()

# plt.ioff()
plt.show()
コード例 #6
0
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import image

# LOAD DATA
mnist = input_data.read_data_sets('data/', one_hot=True)
images = image.run()


# INIT WEIGHTS
def init_weights(shape):
    init_random_dist = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(init_random_dist)


# INIT BIAS
def init_bias(shape):
    init_bias_vals = tf.constant(0.1, shape=shape)
    return tf.Variable(init_bias_vals)


# CONV2D
def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')


# POOLING
def max_pool_2by2(x):
    return tf.nn.max_pool(x,
                          ksize=[1, 2, 2, 1],
                          strides=[1, 2, 2, 1],