############################################################################# # Model Setup # ############################################################################# logging.info("MODEL SETUP - Tensorflow version".format(tf.__version__)) logging.info("MODEL SETUP - Validation Script - train_full.py") from tensorflow.python.client import device_lib logging.info("MODEL SETUP - CUDA VISIBLE DEVICES {}".format( device_lib.list_local_devices())) # tf.compat.v1.debugging.assert_equal(True, tf.test.is_gpu_available()) # tf.compat.v1.debugging.assert_equal(True, tf.test.is_built_with_cuda()) image2seq = EDAXUMLP() logging.info("MODEL SETUP - image2seq model {} instantiated".format( image2seq.get_model_name())) logging.info("MODEL SETUP - log file = " "image2seq/logs/evaluate_log_{}_{}{}.txt".format( date, hour, minute)) # Parameter options ######################################################### # CSV file of images to import # images_seqs_csv = "/graphs/0816_retinanet_1x1_demo/cropped/stage2_train.txt" # train_info_csv = "/graphs/0816_retinanet_1x1_demo/cropped/stage2_train.txt" images_seqs_csv = "/graphs/0828_retinanet_1x1_demo/cropped/stage2_train.txt" train_info_csv = "/graphs/0828_retinanet_1x1_demo/cropped/stage2_train.txt" # Data config batch_size = 22 logging.info("MODEL SETUP - Batch size {}".format(batch_size))
############################################################################# # Model Setup # ############################################################################# logging.info("MODEL SETUP - Training Script - train.py") from tensorflow.python.client import device_lib logging.info("MODEL SETUP - CUDA VISIBLE DEVICES {}".format( device_lib.list_local_devices())) tf.compat.v1.debugging.assert_equal(True, tf.test.is_gpu_available()) tf.compat.v1.debugging.assert_equal(True, tf.test.is_built_with_cuda()) image2seq = EDAXUMLP(image_embedding_dim=256, token_embedding_dim=8, decoder_hidden_dim=512, mlp_hidden_dim=256) logging.info("MODEL SETUP - image2seq model {} instantiated".format( image2seq.get_model_name())) logging.info( "MODEL SETUP - log file = image2seq/logs/train_log_{}_{}{}.txt".format( date, hour, minute)) # Parameter options ######################################################### # CSV file of images to import # images_seqs_csv = "/test_data/stage2_data_train/stage2_train.txt" images_seqs_csv = "/stage2_data_train_1x1/stage2_train.txt" train_info_csv = "/stage2_data_train_1x1/stage2_train_info.txt" # Data config batch_size = 256 logging.info("MODEL SETUP - Batch size {}".format(batch_size)) # Optimizer selection