def _get_next_minibatch(self): try: dataBlob, labelBlob,_ = self.iterator.next() except StopIteration: filenames = imageData.get_files(self.config.get('file_list')) labels = imageData.get_labels(self.config.get('file_list')) self.iterator = iter(self.sampleIter(filenames,labels)) dataBlob, labelBlob,_ = self.iterator.next() return {'data': dataBlob, 'labels': labelBlob }
def setup(self, bottom, top): """Setup the ResamplerDataLayer.""" # parse the layer parameter string layer_config = self.param_str self.config = imageUtil.load_module(layer_config).config filenames = imageData.get_files(self.config.get('file_list')) labels = imageData.get_labels(self.config.get('file_list')) self.sampleIter = imageIterator.SharedImageIterator(self.config, deterministic=True,batch_size=self.config.get('batch_size')) self.iterator = iter(self.sampleIter(filenames,labels)) self._name_to_top_map = { 'data': 0, 'labels': 1} top[0].reshape(self.config.get('batch_size'), 3, self.config.get('h'), self.config.get('w')) top[1].reshape(self.config.get('batch_size'))