def main(pixThreshold, frameRate, videoStream): expDuration = 600000 # duration of experiment, in seconds; only relevant for live feed saveFreq = 4500 # how often to save data, in frames i, m = imageTools.loadImageAndMask() m, w = imageTools.convertMaskToWeights(m) videoType, displayDiffs = imageTools.getVideoType(videoStream) cap = cv2.VideoCapture(videoStream) print 'Camera resolution is %s x %s' % (str(m.shape[1]), str(m.shape[0])) cap.set(3, m.shape[1]) cap.set(4, m.shape[0]) ret, frame = cap.read() storedFrame = imageTools.grayBlur(frame) pixThreshold = int(np.floor(pixThreshold * storedFrame.shape[0])) print('PixelThreshold is %i') % pixThreshold pixData = np.zeros([saveFreq, len(np.unique(w)) + 1]) i = 0 # a counter for saving chunks of data totalFrames = 0 startTime = datetime.now() oldTime = startTime elapsed = 0 print('Analyzing motion data...') moviedeq = [] while (cap.isOpened()): ret, frame = cap.read() if ret == False: print 'End of Video' break currentFrame = imageTools.grayBlur(frame) moviedeq.append(currentFrame) diff = imageTools.diffImage(storedFrame, currentFrame, pixThreshold, displayDiffs) timeDiff = 1. / frameRate elapsed = elapsed + timeDiff counts = np.bincount(w, weights=diff.ravel()) pixData[i, :] = np.hstack((elapsed, counts)) totalFrames += 1 storedFrame = currentFrame # comment out if nothing is in first frame i += 1 pixData = pixData[:i, :] pixData = pixData[:, 2:] # get rid of timing column and background column file = open(videoStream + ".motion2", 'w') file.write("12/8/2015" + '\015') for x in range(0, 285): #print "x", x for y in range(0, 96): file.write(str(int(pixData[x, :][y])) + '\n') cap.release() cv2.destroyAllWindows() vidInfo = {} return vidInfo
def main(pixThreshold, frameRate, videoStream): row = {0: 0, 1: 12, 2: 24, 3: 36, 4: 48, 5: 60, 6: 72, 7: 84} saveFreq = 4500 # how often to save data, in frames, just making sure this is really big, so I don't have any issues, would be important for memory considerations if I was doing a long movie #i,m = imageTools.loadImageAndMask() filenumber = videoStream.split('.')[0].split('_')[ len(videoStream.split('.')[0].split('_')) - 1] #print "testing: ", filenumber # if 1 <= int(filenumber) <= 20: # movielist = list(range(1,21)) # if 21 <= int(filenumber) <= 40: # movielist = list(range(21,41)) # if 41 <= int(filenumber) <= 60: # movielist = list(range(41,61)) # if 61 <= int(filenumber) <= 70: # movielist = list(range(51,71)) # if 71 <= int(filenumber) <= 80: # movielist = list(range(71,91)) # if 81 <= int(filenumber) <= 478: # movielist = list(range(int(filenumber)-10,int(filenumber)+10)) # if 479 <= filenumber <= 488: # movielist = list(range(468,488)) # if 489 <= int(filenumber) <= 498: # movielist = list(range(489,509)) # if 499 <= int(filenumber) <= 598: # movielist = list(range(int(filenumber)-10,int(filenumber)+10)) # if 599 <= int(filenumber) <= 608: # movielist = list(range(599,609)) # if 609 <= int(filenumber) <= 631: # movielist = list(range(609,632)) # if 632 <= int(filenumber) <= 661: # movielist = list(range(632,662)) # if 662 <= int(filenumber) <= 691: # movielist = list(range(662,692)) # if 692 <= int(filenumber) <= 721: # movielist = list(range(692,722)) # if 722 <= int(filenumber) <= 741: # movielist = list(range(722,742)) # if 742 <= int(filenumber) <= 781: # movielist = list(range(742,782)) # if 782 <= int(filenumber) <= 821: # movielist = list(range(782,822)) # if 822 <= int(filenumber) <= 862: # movielist = list(range(822,862)) # if 862 <= int(filenumber) <= 901: # movielist = list(range(862,901)) if 1 <= int(filenumber) <= 20: movielist = list(range(1, 21)) if 21 <= int(filenumber) <= 40: movielist = list(range(21, 41)) if 41 <= int(filenumber) <= 60: movielist = list(range(41, 61)) if 61 <= int(filenumber) <= 70: movielist = list(range(61, 71)) # if 1 <= int(filenumber) <= 70: # movielist = list(range(71,111)) if 71 <= int(filenumber) <= 100: movielist = list(range(71, 111)) if 101 <= int(filenumber) <= 448: movielist = list(range(int(filenumber) - 20, int(filenumber) + 20)) if 449 <= int(filenumber) <= 488: movielist = list(range(448, 488)) if 489 <= int(filenumber) <= 528: movielist = list(range(489, 529)) if 529 <= int(filenumber) <= 568: movielist = list(range(529, 569)) #movielist = list(range(int(filenumber)-20,int(filenumber)+20)) if 569 <= int(filenumber) <= 608: movielist = list(range(569, 609)) if 609 <= int(filenumber) <= 631: movielist = list(range(609, 632)) if 632 <= int(filenumber) <= 661: movielist = list(range(632, 662)) if 662 <= int(filenumber) <= 691: movielist = list(range(662, 692)) if 692 <= int(filenumber) <= 721: movielist = list(range(692, 722)) if 722 <= int(filenumber) <= 741: movielist = list(range(722, 742)) #if 632 <= int(filenumber) <= 741: # movielist = list(range(609,632)) if 742 <= int(filenumber) <= 781: movielist = list(range(742, 782)) if 782 <= int(filenumber) <= 821: movielist = list(range(782, 822)) if 822 <= int(filenumber) <= 862: movielist = list(range(822, 862)) if 862 <= int(filenumber) <= 901: movielist = list(range(862, 901)) modename = str(movielist[0]) + "to" + str(movielist[len(movielist) - 1]) #modename = ''.join(map(str,movielist)) imageMode(movielist, modename) modefilename = "mode_" + modename + ".png" #print movielist try: mpimg.imread(modefilename) #print "mode file already generated" except: imageMode(movielist, modename) e = imageTools.loadmodeImage(modefilename) #e = imageTools.loadModeImage() roimask = np.zeros((660, 1088)) (maxxysnp, minxysnp) = max_min() maxxs = [] minxs = [] maxys = [] minys = [] for j in range(0, numberofwells * 2, 2): if maxxysnp[j] == -100: # if nothing ever moved in this well and there is no max or min value (could happen with a totally empty well) maxxs.append(np.nan) maxys.append(np.nan) minxs.append(np.nan) minys.append(np.nan) else: maxxs.append(maxxysnp[j]) maxys.append(maxxysnp[j + 1]) minxs.append(minxysnp[j]) minys.append(minxysnp[j + 1]) npmaxxs = np.asarray(maxxs) npmaxys = np.asarray(maxys) npminxs = np.asarray(minxs) npminys = np.asarray(minys) npmaxxs = np.reshape(npmaxxs, (numberofcols, numberofrows)) npmaxys = np.reshape(npmaxys, (numberofcols, numberofrows)) #12,8 npminxs = np.reshape(npminxs, (numberofcols, numberofrows)) npminys = np.reshape(npminys, (numberofcols, numberofrows)) #print npmaxxs #print npmaxys #print npminxs #print npminys cmaxxs = [] cminxs = [] cmaxys = [] cminys = [] for j2 in range(0, numberofwells): maxx = maxxs[well_conversion[j2]] maxy = maxys[well_conversion[j2]] miny = minys[well_conversion[j2]] minx = minxs[well_conversion[j2]] #print "j2: ", j2, well_conversion[j2], maxx, maxy, minx, miny #print "wcj2/8: ", well_conversion[j2]/8 #print npmaxxs[well_conversion[j2]/8,:] #print npminxs[well_conversion[j2]/8,:] #print np.nanmean(npmaxxs[well_conversion[j2]/8,:]) #print np.nanmean(npminxs[well_conversion[j2]/8,:]) #print "j2/12: ", j2/12 #print npmaxys[:,j2/12] #print npminys[:,j2/12] #print np.nanmean(npmaxys[:,j2/12]) #print np.nanmean(npminys[:,j2/12]) if minx == maxx: maxx = maxx + 2 if miny == maxy: maxy = maxy + 2 if math.isnan( float(maxx) ): # could also add a condition if min and max are equal to each other #print "very first if statement" maxx = np.nanmean(npmaxxs[well_conversion[j2] / numberofrows, :]) minx = np.nanmean(npminxs[well_conversion[j2] / numberofrows, :]) maxy = np.nanmean(npmaxys[:, j2 / numberofcols]) miny = np.nanmean(npminys[:, j2 / numberofcols]) #print "new means: ", maxx, minx, maxy, miny # In the case that the entire row never gets any values in any wells and the mean is still NaN # not 100% sure that this is going to work, will get a runtime warning, so then can check it out?? # mostly not sure about the well_conversions for the Xs if math.isnan(float(maxx)) and math.isnan(float(minx)): # print "first if statement" if well_conversion[j2] < 8: #print "2nd if statement" minx = well_conversion[j2] maxx = well_conversion[j2] + 85 else: # print "2nd else statement" minx = cminxs[well_conversion[j2] - 8] + 85 maxx = cmaxxs[well_conversion[j2] - 8] + 85 ###if j2 <= 11: # print "3rd if statement" ### miny = j2 ### maxy = j2+60 ### minx = j2 if math.isnan(float(maxy)) and math.isnan(float(miny)): #print "4th if statement" if j2 < 12: # print "5th if statement" miny = j2 maxy = j2 + 85 else: # print "5th else statement" miny = cminys[j2 - 12] + 85 maxy = cmaxys[j2 - 12] + 85 # End of untested section cmaxxs.append(maxx) cmaxys.append(maxy) cminxs.append(minx) cminys.append(miny) #print miny, maxy, minx, maxx, j2, j2+1 roimask[miny:maxy, minx:maxx] = j2 + 1 np.set_printoptions(threshold=np.nan) # printing entire array cmaxxs.sort() cmaxys.sort() cminxs.sort() cminys.sort() rm, roimaskweights = imageTools.convertMaskToWeights(roimask) # start camera or open video videoType, displayDiffs = imageTools.getVideoType(videoStream) cap = cv2.VideoCapture(videoStream) # adjust video resolution if necessary (sized to mask) print 'Camera resolution is %s x %s' % (str( roimask.shape[1]), str(roimask.shape[0])) cap.set(3, roimask.shape[1]) cap.set(4, roimask.shape[0]) # Set Pixel Threshold ret, frame = cap.read() storedImage = np.array(e * 255, dtype=np.uint8) # have to convert the float32 to uint8 storedMode = imageTools.Blur(storedImage) storedFrame = imageTools.grayBlur(frame) #pixThreshold = int(np.floor( pixThreshold * storedFrame.shape[0] )) print('PixelThreshold is %i') % pixThreshold #cenData = np.zeros([ saveFreq, len(np.unique(roimaskweights))*2]) cenData = np.zeros([saveFreq, len(np.unique(roimaskweights)) * 2 - 2]) #print "cenData shape: ", np.shape(cenData) pixData = np.zeros([saveFreq, len(np.unique(roimaskweights))]) #pixData = np.zeros([ saveFreq, len(np.unique(roimaskweights))]) i = 0 # a counter for saving chunks of data totalFrames = 0 startTime = datetime.now() print('Analyzing motion data...') frame_roi = [] while (cap.isOpened()): ret, frame = cap.read() if ret == False: print 'End of Video' break currentFrame = imageTools.grayBlur(frame) currentFrame2 = imageTools.grayBlur(frame) diffpix = imageTools.diffImage(storedFrame, currentFrame2, pixThreshold, displayDiffs) diff = imageTools.trackdiffImage(storedMode, currentFrame, pixThreshold, displayDiffs) #cv2.imwrite(videoStream + '_diffimage_' + str(i) + ".png", diff) diff.dtype = np.uint8 _, contours, hierarchy = cv2.findContours(diff, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) MIN_THRESH = 20.0 MIN_THRESH_P = 20.0 roi_dict = {} for r in range(0, numberofwells): roi_dict[r + 1] = [] for cs in range(0, len(contours)): #print "area and lenght: ", cv2.contourArea(contours[cs]), cv2.arcLength(contours[cs], True) if cv2.contourArea(contours[cs]) < 1.0: continue if cv2.arcLength(contours[cs], True) < 1.0: continue if cv2.contourArea(contours[cs]) > MIN_THRESH or cv2.arcLength( contours[cs], True) > MIN_THRESH_P: M = cv2.moments(contours[cs]) #print M cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) #print "cX, cY :", cX, cY r = 1 c = 1 for x in range(0, len(cmaxxs)): #print "cmaxxs: ", cmaxxs[x] if cX > cmaxxs[x]: r = x + 1 #print "r: ", r #print "r: ", r for y in range(0, len(cmaxys)): #print "cmaxys: ", cmaxys[x] if cY > cmaxys[y]: c = y + 1 # print "c: ", c if c == numberofwells: c = c - 1 if r == numberofwells: r = r - 1 area = cv2.contourArea(contours[cs]) perim = cv2.arcLength(contours[cs], True) #print c, numberofcols, c/numberofcols if not roi_dict[r / numberofrows + 1 + row[c / numberofcols]]: roi_dict[r / numberofrows + 1 + row[c / numberofcols]].append( (area * perim, cX, cY)) else: if roi_dict[r / numberofrows + 1 + row[c / numberofcols]] < area * perim: roi_dict[r / numberofrows + 1 + row[c / numberofcols]][0] = (area * perim, cX, cY) frame_roi.append(roi_dict) pixcounts = [] pixcounts = np.bincount(roimaskweights, weights=diffpix.ravel()) pixData[i, :] = np.hstack((pixcounts)) counts = [] keys = roi_dict.keys() keys.sort() for k in keys: #print "k: ", k x = -10000 y = -10000 if roi_dict[k]: x = roi_dict[k][0][1] y = roi_dict[k][0][2] counts.append(x) counts.append(y) cv2.line(storedImage, (x, y), (x, y), (255, 255, 255), 2) if i == 284: cv2.imwrite( videoStream + '_trackedimagewithlines_' + str(i) + ".png", storedImage) cenData[i, :] = np.asarray(counts) totalFrames += 1 storedFrame = currentFrame i += 1 file = open(videoStream + ".centroid2", 'w') for x in range(0, 285): for y in range(0, 192): file.write(str(int(cenData[x, :][y])) + '\n') pixData = pixData[:i, :] pixData = pixData[:, 1:] # get rid of background column file = open(videoStream + ".motion2", 'w') #file.write("12/8/2015" + '\015') for x in range(0, 285): for y in range(0, numberofwells): file.write(str(int(pixData[x, :][y])) + '\n') # vidInfo = {} # release camera cap.release() cv2.destroyAllWindows()
def main(pixThreshold, frameRate, videoStream): expDuration = 600000 # duration of experiment, in seconds; only relevant for live feed saveFreq = 4500 # how often to save data, in frames i, m = imageTools.loadImageAndMask() # convert mask to integer values for bincount weights m, w = imageTools.convertMaskToWeights(m) #print m,w # start camera or open video videoType, displayDiffs = imageTools.getVideoType(videoStream) cap = cv2.VideoCapture(videoStream) # adjust video resolution if necessary (sized to mask) print 'Camera resolution is %s x %s' % (str(m.shape[1]), str(m.shape[0])) cap.set(3, m.shape[1]) cap.set(4, m.shape[0]) # Set Pixel Threshold ret, frame = cap.read() storedFrame = imageTools.grayBlur(frame) pixThreshold = int(np.floor(pixThreshold * storedFrame.shape[0])) print('PixelThreshold is %i') % pixThreshold # Acquire data if saveFreq / frameRate > expDuration: # do shorter of expDuration vs. saveFreq saveFreq = expDuration * frameRate pixData = np.zeros([saveFreq, len(np.unique(w)) + 1]) i = 0 # a counter for saving chunks of data totalFrames = 0 startTime = datetime.now() oldTime = startTime elapsed = 0 print('Analyzing motion data...') moviedeq = [] while (cap.isOpened()): ret, frame = cap.read() if ret == False: print 'End of Video' break currentFrame = imageTools.grayBlur(frame) moviedeq.append(currentFrame) # check if i bigger than saveFreq. If yes, save and reset values ## if i >= saveFreq: # save data ## timeStamp = datetime.now() # make a directory to save stuff in? %m%d%y%H%M ## fname = 'data' + videoStream + timeStamp.strftime('%m%d%y%H%M%S') + '.npy' #fname = 'data' + timeStamp.strftime('%m%d%y%H%M%S') + '.npy' ## np.save(fname,pixData) # reset pixData and i ## pixData = np.zeros([ saveFreq, len(np.unique(w)) + 1]) ## i = 0 # stop experiment if user presses 'q' or if experiment duration is up if (cv2.waitKey(1) & 0xFF == ord('q') or len(sys.argv) == 1 and datetime.now() > startTime + timedelta(seconds=expDuration)): break # record pixel differences in all of the ROIs diff = imageTools.diffImage(storedFrame, currentFrame, pixThreshold, displayDiffs) timeDiff = 1. / frameRate elapsed = elapsed + timeDiff #print elapsed # calculate and record pixel differences counts = np.bincount(w, weights=diff.ravel()) #print counts # output pixData[i, :] = np.hstack((elapsed, counts)) totalFrames += 1 storedFrame = currentFrame # comment out if nothing is in first frame #oldTime = newTime i += 1 # done recording. Remove empty rows (those bigger than i) from PixData pixData = pixData[:i, :] #print np.shape(pixData) #print pixData #testing = calc_mode(moviedeq, np.zeros([660,1088])) #cv2.imwrite('test_img.jpg', testing) # Write data to file with timestamp: # np.save(movieName[:-4] + '.npy', pixData) ##timeStamp = datetime.now() ##fname = 'data' + videoStream + timeStamp.strftime('%m%d%y%H%M%S') + '.npy' #fname = 'data' + timeStamp.strftime('%m%d%y%H%M%S') + '.npy' ##np.save(fname,pixData) pixData = pixData[:, 2:] # get rid of timing column and background column #print np.shape(pixData) #print pixData #pixData = deltaPix[:,1:] # get rid of background column file = open(videoStream + ".motion2", 'w') file.write("12/8/2015" + '\015') for x in range(0, 285): #print "x", x for y in range(0, 96): #print "y", y #print str(int(pixData[x,:][y])) file.write(str(int(pixData[x, :][y])) + '\n') # Save info (elapsed time and framerate) for later use vidInfo = {} #analysisTime = timeStamp - startTime #vidInfo['analysisTime'] = float(str(analysisTime.seconds) + '.' + str(analysisTime.microseconds)) vidInfo['TotalFrames'] = totalFrames #vidInfo['fps'] = int(totalFrames/vidInfo['analysisTime']) vidInfo['pixThreshold'] = pixThreshold vidInfo['CameraResolution'] = '%s x %s' % (str(m.shape[1]), str( m.shape[0])) vidInfo['NamePrefix'] = videoStream #vidInfo['NamePrefix'] = videoStream.split('.')[0] #print ('Analyzed %i frames in %f seconds') % (vidInfo['TotalFrames'],vidInfo['analysisTime']) #print('FrameRate is about %i fps') % vidInfo['fps'] print 'Motion threshold is %i pixels' % int(pixThreshold) print 'Camera resolution is %s' % vidInfo['CameraResolution'] # release camera cap.release() cv2.destroyAllWindows() return vidInfo
def main(pixThreshold,frameRate,videoStream): #elate_loc={(1,1):1, (1,2):2, (1,3):3, (1,4):4, (1:5):5, (1,6):6, (1,7):7, (1,8):8, (1,9):9,(1,10):10,(1,11):11,(1,12):12,(2,1):13,(2,2):14,(2,3):15,(2,4):16,(2:5):17,(2,6):18,(2,7):19,(2,8):20,(2,9):21,(2,10):22,(2,11):23,(2,12):24,(3,1):25,(3,2):26,(3,3):27,(3,4):28,(3,5):29,(3,6):30,(3,7)} rowold={1:0,2:12,3:24,4:36,5:48,6:60,7:72,8:84} row={0:0,1:12,2:24,3:36,4:48,5:60,6:72,7:84} expDuration = 600000 # duration of experiment, in seconds; only relevant for live feed saveFreq = 4500 # how often to save data, in frames i,m = imageTools.loadImageAndMask() e = imageTools.loadModeImage() roimask = np.zeros((660,1088)) (maxxysnp, minxysnp) = max_min() print "maxxysnp: ", maxxysnp print "minxysnp: ", minxysnp maxxs = [] minxs = [] maxys = [] minys = [] for j in range (0, numberofwells*2,2): maxx = maxxysnp[j] maxxs.append(maxxysnp[j]) maxy = maxxysnp[j+1] maxys.append(maxxysnp[j+1]) minx = minxysnp[j] minxs.append(minxysnp[j]) miny = minxysnp[j+1] minys.append(minxysnp[j+1]) roimask[miny:maxy,minx:maxx] = j+1 maxxs.sort() maxys.sort() minxs.sort() minys.sort() #smaxxs = [] #sminxs = [] #smaxys = [] #sminys = [] #rx = 8 #cy = 12 #realmaxx = 0 #realmaxxs = [] #for z in range(0, len(maxxs)): # if z == cy - 1: # realmaxxs.append(realmaxx) # realmaxx = 0 # if maxxs[z] > realmaxx: # realmaxx = maxxs[z] np.set_printoptions(threshold=np.nan) # printing entire array print roimask # print maxx,maxy,minx,miny #print e #cv2.imwrite('testinge.jpg', e) #cv2.imwrite('testingm.jpg', m) #cv2.imwrite('testingi.jpg', i) # convert mask to integer values for bincount weights #print "mask1: ", np.shape(m), m m,w = imageTools.convertMaskToWeights(m) rm,roimaskweights = imageTools.convertMaskToWeights(roimask) #print "mask2: ", np.shape(m), m #print "weights: ", np.shape(w), w unique = np.unique(m) print "unique: ", unique unique2 = np.unique(rm) print "unique2: ", unique2 #print np.shape(m) rminr = set() rminc = set() rmaxr = set() rmaxc = set() for x in unique2: #print "x: ", x #if x == 0: # continue #print np.shape(np.where(m==x)) #print np.where(m==x) rmaxdimc = np.amax(np.where(rm==x)[0]) rmaxc.add(rmaxdimc) #print "max dimc: ", np.amax(np.where(m==x)[0]) rmaxdimr = np.amax(np.where(rm==x)[1]) rmaxr.add(rmaxdimr) #print "max dimr: ", np.amax(np.where(m==x)[1]) rmindimc = np.amin(np.where(rm==x)[0]) rminc.add(rmindimc) #print "min dimc: ", np.amin(np.where(m==x)[0]) rmindimr = np.amin(np.where(rm==x)[1]) rminr.add(rmindimr) #print "min dimr: ", np.amin(np.where(m==x)[1]) rlminx = list(rminr) rlminx.sort() rlmaxx = list(rmaxr) rlmaxx.sort() rlminy = list(rminc) rlminy.sort() rlmaxy = list(rmaxc) rlmaxy.sort() print rlminx, rlmaxx, rlminy, rlmaxy minr = set() minc = set() maxr = set() maxc = set() for x in unique: #print "x: ", x if x == 0: continue #print np.shape(np.where(m==x)) #print np.where(m==x) maxdimc = np.amax(np.where(m==x)[0]) maxc.add(maxdimc) #print "max dimc: ", np.amax(np.where(m==x)[0]) maxdimr = np.amax(np.where(m==x)[1]) maxr.add(maxdimr) #print "max dimr: ", np.amax(np.where(m==x)[1]) mindimc = np.amin(np.where(m==x)[0]) minc.add(mindimc) #print "min dimc: ", np.amin(np.where(m==x)[0]) mindimr = np.amin(np.where(m==x)[1]) minr.add(mindimr) #print "min dimr: ", np.amin(np.where(m==x)[1]) #print minr, maxr, minc, maxc lminx = list(minr) lminx.sort() lmaxx = list(maxr) lmaxx.sort() lminy = list(minc) lminy.sort() lmaxy = list(maxc) lmaxy.sort() print "real mask: ", lminx, lmaxx, lminy, lmaxy #print lminr, lmaxr, lminc, lmaxc #print np.where(m==75) #for x in len(m): #print m[x] #print "mask2: ", np.shape(m), m #print "mask: ", np.nonzero(m) #print m,w # start camera or open video videoType, displayDiffs = imageTools.getVideoType(videoStream) cap = cv2.VideoCapture(videoStream) # adjust video resolution if necessary (sized to mask) print 'Camera resolution is %s x %s' % (str(m.shape[1]),str(m.shape[0])) cap.set(3,m.shape[1]) cap.set(4,m.shape[0]) # Set Pixel Threshold ret,frame = cap.read() storedImage = np.array(e * 255, dtype = np.uint8) # have to convert the float32 to uint8 storedMode = imageTools.Blur(storedImage) storedFrame = imageTools.grayBlur(frame) pixThreshold = int(np.floor( pixThreshold * storedFrame.shape[0] )) print('PixelThreshold is %i') % pixThreshold cenData = np.zeros([ saveFreq, len(np.unique(w))*2 -2]) pixData = np.zeros([ saveFreq, len(np.unique(w)) + 1]) i = 0 # a counter for saving chunks of data totalFrames = 0 startTime = datetime.now() oldTime = startTime elapsed = 0 print('Analyzing motion data...') frame_roi = [] while(cap.isOpened()): #print "frames", totalFrames ret,frame = cap.read() if ret == False: print 'End of Video' break currentFrame = imageTools.grayBlur(frame) currentFrame2 = imageTools.grayBlur(frame) diffpix = imageTools.diffImage(storedFrame,currentFrame2,pixThreshold,displayDiffs) #print np.shape(diffpix) #print diffpix # This is 660x1088 diff = imageTools.trackdiffImage(storedMode,currentFrame,pixThreshold,displayDiffs) diff.dtype = np.uint8 _,contours,hierarchy = cv2.findContours(diff, cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE) MIN_THRESH = 20.0 MIN_THRESH_P = 20.0 #if cv2.contourArea(contours[0]) > MIN_THRESH: # M = cv2.moments(contours[0]) # cX = int(M["m10"] / M["m00"]) # cY = int(M["m01"] / M["m00"]) # print cX,cY roi_dict = {} for r in range(0,numberofwells): roi_dict[r+1] = [] for cs in range(0,len(contours)): if cv2.contourArea(contours[cs]) > MIN_THRESH or cv2.arcLength(contours[cs],True) > MIN_THRESH_P: #if cv2.contourArea(contours[cs]) > MIN_THRESH and cv2.arcLength(contours[cs],True) > MIN_THRESH_P: M = cv2.moments(contours[cs]) cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) print i, " cX and cY:", cX, cY #print lmaxx #print lmaxy r=1 c=1 for x in range(0,len(lmaxx)): if cX > lmaxx[x]: r=x+2 print "Lx,cX,lmaxx[x],lmin[x] ",x, cX, lmaxx[x], lminx[x] for y in range(0, len(lmaxy)): if cY > lmaxy[y]: c=y+2 print "Ly,cY,maxy[y],lmin[x],r,c ",y, cY, lmaxy[y], lminy[y],r,c area = cv2.contourArea(contours[cs]) perim = cv2.arcLength(contours[cs],True) perim = cv2.arcLength(contours[cs],True) print "L r + c + row[c]: ", r, c, rowold[c]," final well: ", r + rowold[c] if not roi_dict[r+rowold[c]]: # roi_dict[r+row[c]].append((area*perim)) roi_dict[r+rowold[c]].append((area*perim,cX,cY)) #roi_dict[r+rowold[c]].append((area*perim,contours[cs])) else: if roi_dict[r+rowold[c]] < area*perim: roi_dict[r+rowold[c]][0] = (area*perim,cX,cY) print len(maxxs), maxxs, maxys, minxs, minys for x in range(0,len(maxxs)): if cX > maxxs[x]: r=x+1 # maybe DONT ADD TWO? #r=x+2 # maybe DONT ADD TWO? print "x,cX,maxx[x],minx[x],r,c: ",x, cX, maxxs[x], minxs[x],r,c for y in range(0, len(maxys)): if cY > maxys[y]: c=y+1 #c=y+2 print "y,cY,maxy[y].miny[y],r,c", y, cY, maxys[y], minys[y],r,c area = cv2.contourArea(contours[cs]) perim = cv2.arcLength(contours[cs],True) print "r + c + r/8+1 + c/12: ", r, c, r/8+1, c/12, " row[c/12]: ", row[c/12], " final well: ", r/8 + 1 + row[c/12] if not roi_dict[r/8+1+row[c/12]]: # roi_dict[r+row[c]].append((area*perim)) roi_dict[r/8+1+row[c/12]].append((area*perim,cX,cY)) #roi_dict[r+row[c]].append((area*perim,contours[cs])) else: if roi_dict[r/8+1+row[c/12]] < area*perim: roi_dict[r/8+1+row[c/12]][0] = (area*perim,cX,cY) frame_roi.append(roi_dict) timeDiff = 1. / frameRate elapsed = elapsed + timeDiff pixcounts = [] pixcounts = np.bincount(w, weights=diffpix.ravel()) pixData[i,:] = np.hstack((elapsed,pixcounts)) counts = [] keys = roi_dict.keys() keys.sort() for k in keys: x = -10000 y = -10000 if roi_dict[k]: x = roi_dict[k][0][1] y = roi_dict[k][0][2] counts.append(x) counts.append(y) cv2.line(storedImage,(x,y),(x,y),(255,255,255),2) if i == 284: cv2.imwrite('trackedimagewithlines_' + str(i) + ".png", storedImage) cenData[i,:] = np.asarray(counts) totalFrames += 1 storedFrame = currentFrame i += 1 file = open(videoStream + ".centroid2",'w') for x in range(0,285): for y in range(0,192): file.write(str(int(cenData[x,:][y])) + '\n') pixData = pixData[:i,:] pixData = pixData[:,2:] # get rid of timing column and background column file = open(videoStream + ".motion2",'w') file.write("12/8/2015" + '\015') for x in range(0,285): #print "x", x for y in range(0,numberofwells): file.write(str(int(pixData[x,:][y])) + '\n') vidInfo = {} # release camera cap.release() cv2.destroyAllWindows() return vidInfo
def main(pixThreshold, frameRate, videoStream): #elate_loc={(1,1):1, (1,2):2, (1,3):3, (1,4):4, (1:5):5, (1,6):6, (1,7):7, (1,8):8, (1,9):9,(1,10):10,(1,11):11,(1,12):12,(2,1):13,(2,2):14,(2,3):15,(2,4):16,(2:5):17,(2,6):18,(2,7):19,(2,8):20,(2,9):21,(2,10):22,(2,11):23,(2,12):24,(3,1):25,(3,2):26,(3,3):27,(3,4):28,(3,5):29,(3,6):30,(3,7)} col = {1: 0, 2: 12, 3: 24, 4: 36, 5: 48, 6: 60, 7: 72, 8: 84} expDuration = 600000 # duration of experiment, in seconds; only relevant for live feed saveFreq = 4500 # how often to save data, in frames i, m = imageTools.loadImageAndMask() e = imageTools.loadModeImage() #print e #cv2.imwrite('testinge.jpg', e) #cv2.imwrite('testingm.jpg', m) #cv2.imwrite('testingi.jpg', i) # convert mask to integer values for bincount weights np.set_printoptions(threshold=np.nan) # printing entire array #print "mask1: ", np.shape(m), m m, w = imageTools.convertMaskToWeights(m) #print "mask2: ", np.shape(m), m unique = np.unique(m) #print np.shape(m) minr = set() minc = set() maxr = set() maxc = set() for x in unique: #print "x: ", x if x == 0: continue #print np.shape(np.where(m==x)) #print np.where(m==x) maxdimc = np.amax(np.where(m == x)[0]) maxc.add(maxdimc) #print "max dimc: ", np.amax(np.where(m==x)[0]) maxdimr = np.amax(np.where(m == x)[1]) maxr.add(maxdimr) #print "max dimr: ", np.amax(np.where(m==x)[1]) mindimc = np.amin(np.where(m == x)[0]) minc.add(mindimc) #print "min dimc: ", np.amin(np.where(m==x)[0]) mindimr = np.amin(np.where(m == x)[1]) minr.add(mindimr) #print "min dimr: ", np.amin(np.where(m==x)[1]) #print minr, maxr, minc, maxc lminx = list(minr) lminx.sort() lmaxx = list(maxr) lmaxx.sort() lminy = list(minc) lminy.sort() lmaxy = list(maxc) lmaxy.sort() #print lminr, lmaxr, lminc, lmaxc #print np.where(m==75) #for x in len(m): #print m[x] #print "mask2: ", np.shape(m), m #print "mask: ", np.nonzero(m) #print m,w # start camera or open video videoType, displayDiffs = imageTools.getVideoType(videoStream) cap = cv2.VideoCapture(videoStream) # adjust video resolution if necessary (sized to mask) print 'Camera resolution is %s x %s' % (str(m.shape[1]), str(m.shape[0])) cap.set(3, m.shape[1]) cap.set(4, m.shape[0]) # Set Pixel Threshold ret, frame = cap.read() storedImage = np.array(e * 255, dtype=np.uint8) # have to convert the float32 to uint8, hopefully this is doing it correctly (found online) storedFrame = imageTools.Blur(storedImage) #storedFrame = imageTools.grayBlur(frame) pixThreshold = int(np.floor(pixThreshold * storedFrame.shape[0])) print('PixelThreshold is %i') % pixThreshold # Acquire data if saveFreq / frameRate > expDuration: # do shorter of expDuration vs. saveFreq saveFreq = expDuration * frameRate pixData = np.zeros([saveFreq, len(np.unique(w)) * 2 - 2]) i = 0 # a counter for saving chunks of data totalFrames = 0 startTime = datetime.now() oldTime = startTime elapsed = 0 print('Analyzing motion data...') moviedeq = [] frame_roi = [] while (cap.isOpened()): ret, frame = cap.read() if ret == False: print 'End of Video' break currentFrame = imageTools.grayBlur(frame) moviedeq.append(currentFrame) # stop experiment if user presses 'q' or if experiment duration is up if (cv2.waitKey(1) & 0xFF == ord('q') or len(sys.argv) == 1 and datetime.now() > startTime + timedelta(seconds=expDuration)): break diff = imageTools.trackdiffImage(storedFrame, currentFrame, pixThreshold, displayDiffs) diff.dtype = np.uint8 _, contours, hierarchy = cv2.findContours(diff, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) MIN_THRESH = 20.0 MIN_THRESH_P = 20.0 #if cv2.contourArea(contours[0]) > MIN_THRESH: # M = cv2.moments(contours[0]) # cX = int(M["m10"] / M["m00"]) # cY = int(M["m01"] / M["m00"]) # print cX,cY roi_dict = {} for r in range(0, 96): roi_dict[r + 1] = [] for cs in range(0, len(contours)): if cv2.contourArea(contours[cs]) > MIN_THRESH or cv2.arcLength( contours[cs], True) > MIN_THRESH_P: #if cv2.contourArea(contours[cs]) > MIN_THRESH and cv2.arcLength(contours[cs],True) > MIN_THRESH_P: M = cv2.moments(contours[cs]) cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) #print i, " cX and cY:", cX, cY #print lmaxx #print lmaxy r = 1 c = 1 for x in range(0, len(lmaxx)): if cX > lmaxx[x]: r = x + 2 # print x, cX, lmaxx[x], lminx[x] for y in range(0, len(lmaxy)): if cY > lmaxy[y]: c = y + 2 # print y, cY, lmaxy[y], lminy[y] area = cv2.contourArea(contours[cs]) perim = cv2.arcLength(contours[cs], True) if not roi_dict[r + col[c]]: # roi_dict[r+col[c]].append((area*perim)) roi_dict[r + col[c]].append((area * perim, cX, cY)) #roi_dict[r+col[c]].append((area*perim,contours[cs])) else: if roi_dict[r + col[c]] < area * perim: roi_dict[r + col[c]][0] = (area * perim, cX, cY) frame_roi.append(roi_dict) timeDiff = 1. / frameRate elapsed = elapsed + timeDiff counts = [] keys = roi_dict.keys() keys.sort() for k in keys: x = -10000 y = -10000 if roi_dict[k]: x = roi_dict[k][0][1] y = roi_dict[k][0][2] counts.append(x) counts.append(y) cv2.line(storedImage, (x, y), (x, y), (255, 255, 255), 2) cv2.imwrite('withlines' + str(i) + ".png", storedImage) pixData[i, :] = np.asarray(counts) totalFrames += 1 file = open(videoStream + ".centroid2", 'w') for x in range(0, 285): for y in range(0, 192): file.write(str(int(pixData[x, :][y])) + '\n') # Save info (elapsed time and framerate) for later use vidInfo = {} analysisTime = timeStamp - startTime vidInfo['analysisTime'] = float( str(analysisTime.seconds) + '.' + str(analysisTime.microseconds)) vidInfo['TotalFrames'] = totalFrames vidInfo['fps'] = int(totalFrames / vidInfo['analysisTime']) vidInfo['pixThreshold'] = pixThreshold vidInfo['CameraResolution'] = '%s x %s' % (str(m.shape[1]), str( m.shape[0])) vidInfo['NamePrefix'] = videoStream #vidInfo['NamePrefix'] = videoStream.split('.')[0] print('Analyzed %i frames in %f seconds') % (vidInfo['TotalFrames'], vidInfo['analysisTime']) print('FrameRate is about %i fps') % vidInfo['fps'] print 'Motion threshold is %i pixels' % int(pixThreshold) print 'Camera resolution is %s' % vidInfo['CameraResolution'] # release camera cap.release() cv2.destroyAllWindows() return vidInfo
def main(pixThreshold,frameRate,videoStream): row={0:0,1:12,2:24,3:36,4:48,5:60,6:72,7:84} saveFreq = 4500 # how often to save data, in frames, just making sure this is really big, so I don't have any issues, would be important for memory considerations if I was doing a long movie #print (videoStream) filenumber = videoStream.split('.')[0].split('_')[len(videoStream.split('.')[0].split('_'))-1] # print (filenumber) # if 1 <= int(filenumber) <= 20: # movielist = list(range(1,21)) # if 21 <= int(filenumber) <= 40: # movielist = list(range(21,41)) # if 41 <= int(filenumber) <= 60: # movielist = list(range(41,61)) # if 61 <= int(filenumber) <= 70: # movielist = list(range(51,71)) # if 71 <= int(filenumber) <= 80: # movielist = list(range(71,91)) # if 81 <= int(filenumber) <= 478: # movielist = list(range(int(filenumber)-10,int(filenumber)+10)) # if 479 <= filenumber <= 488: # movielist = list(range(468,488)) # if 489 <= int(filenumber) <= 498: # movielist = list(range(489,509)) # if 499 <= int(filenumber) <= 598: # movielist = list(range(int(filenumber)-10,int(filenumber)+10)) # if 599 <= int(filenumber) <= 608: # movielist = list(range(599,609)) # if 609 <= int(filenumber) <= 631: # movielist = list(range(609,632)) # if 632 <= int(filenumber) <= 661: # movielist = list(range(632,662)) # if 662 <= int(filenumber) <= 691: # movielist = list(range(662,692)) # if 692 <= int(filenumber) <= 721: # movielist = list(range(692,722)) # if 722 <= int(filenumber) <= 741: # movielist = list(range(722,742)) # if 742 <= int(filenumber) <= 781: # movielist = list(range(742,782)) # if 782 <= int(filenumber) <= 821: # movielist = list(range(782,822)) # if 822 <= int(filenumber) <= 862: # movielist = list(range(822,862)) # if 862 <= int(filenumber) <= 901: # movielist = list(range(862,901)) # if 241 <= int(filenumber) <= 270: # movielist = list(range(241,271)) # if 271 <= int(filenumber) <= 275: # movielist = list(range(271,276)) # if 276 <= int(filenumber) <= 292: # movielist = list(range(276,293)) # if 306 <= int(filenumber) <= 335: # movielist = list(range(306,336)) # if 336 <= int(filenumber) <= 365: # movielist = list(range(336,366)) # if 366 <= int(filenumber) <= 395: # movielist = list(range(366,396)) # if 396 <= int(filenumber) <= 425: # movielist = list(range(396,426)) # if 426 <= int(filenumber) <= 455: # movielist = list(range(426,456)) # if 456 <= int(filenumber) <= 485: # movielist = list(range(456,486)) # if 486 <= int(filenumber) <= 503: # movielist = list(range(486,504)) # f = open(eventsfile, 'r') # lines = f.readlines() # numcounter = 0 # counter = 0 # fullcounter = 0 #1:06:24\tPM\t0\t2\n' # movielist = [] # movielists =[] # timestamp_list = [] # filteredlist = [] # startdate = "2020-02-26" # for line in lines: # TAPES = line.split('\t') #print(TAPES) # if int(TAPES[2]) == 1 or int(TAPES[2]) == 2: # filteredlist.append(line) # for newline in filteredlist: # print(line) # TAPES = newline.split('\t') # print(line) # something = TAPES[2] # fullcounter +=1 #print "early", TAPES[2], TAPES[3] # need to be splitting on tab for the new format of the input file with the spaces in last column #TAPES = line.split('') # if int(TAPES[2]) == 2: # timestamp_list.append(0) # continue # startdate2 = startdate.split("-")[1] + "/" + startdate.split("-")[2] + "/" + startdate.split("-")[0] # dateplustime = startdate2 + TAPES[0][0:len(TAPES[0])] # thistime = faststrptime(dateplustime) # unixtimestamp = dt.timestamp(thistime) # timestamp_list.append(int(unixtimestamp)) # i = 0 # for element in timestamp_list: # if i < (len(timestamp_list)-1) and timestamp_list[i+(counter - i)]-timestamp_list[i] >= 3600: # counter += 1 # i = counter # movielist.append(counter) # # if len(movielist) <= 15: # numcounter = 0 # j = 0 # for step in movielist: # movielists[len(movielists)-1].append(movielist[j]) # j += 1 # movielist = [] # continue # else: # movielists.append(movielist) # movielist = [] # numcounter = 0 # continue # if i < (len(timestamp_list)-1) and timestamp_list[i+1]-timestamp_list[i] >= 3600: # counter += 1 # i = counter # movielist.append(counter) # if len(movielist) <= 15: # numcounter = 0 # j = 0 # for step in movielist: # movielists[len(movielists)-1].append(movielist[j]) # j += 1 # movielist = [] # continue # else: # movielists.append(movielist) # movielist = [] # numcounter = 0 # continue # counter += 1 # numcounter += 1 # if element != 0: # movielist.append(counter) # i += 1 # if numcounter == 30: # numcounter = 0 # movielists.append(movielist) # movielist = [] # if i > (len(timestamp_list)-1): # movielists.append(movielist) # movielist = [] # numcounter = 0 # print(movielists) # numendlists = counter - fullcounter # first = len(movielists)-numendlists # last = len(movielists) # del movielists[first:last] # for x in movielists: # for y in x: # if int(filenumber) == y: # movielist = x # print(movielists) movielist = [1,2] modename = str(movielist[0]) + "to" + str(movielist[len(movielist)-1]) #imageMode(movielist, modename) modefilename = "mode_" + modename + ".png" #print (movielist) try: # mpimg.imread(modefilename) imageTools.loadmodeImage(modefilename) #cv2.imread(modefilename) except: imageMode(movielist, modename) e = imageTools.loadmodeImage(modefilename) #e = imageTools.loadModeImage() roimask = np.zeros((660,1088)) (maxxysnp, minxysnp) = max_min() maxxs = [] minxs = [] maxys = [] minys = [] for j in range (0, numberofwells*2,2): if maxxysnp[j] == -100: # if nothing ever moved in this well and there is no max or min value (could happen with a totally empty well) maxxs.append(np.nan) maxys.append(np.nan) minxs.append(np.nan) minys.append(np.nan) else: maxxs.append(maxxysnp[j]) maxys.append(maxxysnp[j+1]) minxs.append(minxysnp[j]) minys.append(minxysnp[j+1]) npmaxxs = np.asarray(maxxs) npmaxys = np.asarray(maxys) npminxs = np.asarray(minxs) npminys = np.asarray(minys) npmaxxs = np.reshape(npmaxxs, (numberofcols,numberofrows)) npmaxys = np.reshape(npmaxys, (numberofcols,numberofrows)) #12,8 npminxs = np.reshape(npminxs, (numberofcols,numberofrows)) npminys = np.reshape(npminys, (numberofcols,numberofrows)) #print npmaxxs #print npmaxys #print npminxs #print npminys cmaxxs = [] cminxs = [] cmaxys = [] cminys = [] for j2 in range (0, numberofwells): maxx = maxxs[well_conversion[j2]] maxy = maxys[well_conversion[j2]] miny = minys[well_conversion[j2]] minx = minxs[well_conversion[j2]] #print "j2: ", j2, well_conversion[j2], maxx, maxy, minx, miny #print "wcj2/8: ", well_conversion[j2]/8 #print npmaxxs[well_conversion[j2]/8,:] #print npminxs[well_conversion[j2]/8,:] #print np.nanmean(npmaxxs[well_conversion[j2]/8,:]) #print np.nanmean(npminxs[well_conversion[j2]/8,:]) #print "j2/12: ", j2/12 #print npmaxys[:,j2/12] #print npminys[:,j2/12] #print np.nanmean(npmaxys[:,j2/12]) #print np.nanmean(npminys[:,j2/12]) if minx == maxx: maxx = maxx + 2 if miny == maxy: maxy = maxy + 2 if math.isnan(float(maxx)): # could also add a condition if min and max are equal to each other #print "very first if statement" maxx = np.nanmean(npmaxxs[int(well_conversion[j2]/numberofrows),:]) minx = np.nanmean(npminxs[int(well_conversion[j2]/numberofrows),:]) maxy = np.nanmean(npmaxys[:,int(j2/numberofcols)]) miny = np.nanmean(npminys[:,int(j2/numberofcols)]) #print "new means: ", maxx, minx, maxy, miny # In the case that the entire row never gets any values in any wells and the mean is still NaN # not 100% sure that this is going to work, will get a runtime warning, so then can check it out?? # mostly not sure about the well_conversions for the Xs if math.isnan(float(maxx)) and math.isnan(float(minx)): # print "first if statement" if well_conversion[j2] < 8: #print "2nd if statement" minx = well_conversion[j2] maxx = well_conversion[j2]+85 else: # print "2nd else statement" minx = cminxs[well_conversion[j2]-8] + 85 maxx = cmaxxs[well_conversion[j2]-8] + 85 ###if j2 <= 11: # print "3rd if statement" ### miny = j2 ### maxy = j2+60 ### minx = j2 if math.isnan(float(maxy)) and math.isnan(float(miny)): #print "4th if statement" if j2 < 12: # print "5th if statement" miny = j2 maxy = j2+85 else: # print "5th else statement" miny = cminys[j2-12] + 85 maxy = cmaxys[j2-12] + 85 # End of untested section # hack, 06/11/18 if miny == maxy: maxy = maxy+1 if minx == maxx: maxx = maxx+1 # end of hack cmaxxs.append(maxx) cmaxys.append(maxy) cminxs.append(minx) cminys.append(miny) #print (miny, maxy, minx, maxx, j2, j2+1) roimask[int(miny):int(maxy),int(minx):int(maxx)] = j2+1 #np.set_printoptions(threshold=np.nan) # printing entire array cmaxxs.sort() cmaxys.sort() cminxs.sort() cminys.sort() rm,roimaskweights = imageTools.convertMaskToWeights(roimask) # start camera or open video videoType, displayDiffs = imageTools.getVideoType(videoStream) cap = cv2.VideoCapture(videoStream) # adjust video resolution if necessary (sized to mask) #print 'Camera resolution is %s x %s' % (str(roimask.shape[1]),str(roimask.shape[0])) cap.set(3,roimask.shape[1]) cap.set(4,roimask.shape[0]) # Set Pixel Threshold ret,frame = cap.read() storedImage = np.array(e * 255, dtype = np.uint8) # have to convert the float32 to uint8 storedMode = imageTools.Blur(storedImage) storedFrame = imageTools.grayBlur(frame) #pixThreshold = int(np.floor( pixThreshold * storedFrame.shape[0] )) #print('PixelThreshold is %i') % pixThreshold #cenData = np.zeros([ saveFreq, len(np.unique(roimaskweights))*2]) # print "roimaskweights: " # print np.shape(roimaskweights) # print roimaskweights # print "Unique: " # print np.unique(roimaskweights) # print (len(np.unique(roimaskweights))*2 - 2) # print np.shape(roimaskweights) cenData = np.zeros([ saveFreq, len(np.unique(roimaskweights))*2 -2]) # print "cenData shape: ", np.shape(cenData) #print "testing hack below!" #cenData = np.zeros([4500, 192]) pixData = np.zeros([ saveFreq, len(np.unique(roimaskweights))]) #print "testing hack below!" #pixData = np.zeros([4500, 95]) #pixData = np.zeros([ saveFreq, len(np.unique(roimaskweights))]) i = 0 # a counter for saving chunks of data totalFrames = 0 # startTime = datetime.now() #print('Analyzing motion data...') frame_roi = [] # storedImage = cv2.cvtColor(e*255, cv2.COLOR_GRAY2BGR) completed_t = [] f_t = [] while(cap.isOpened()): ret,frame = cap.read() if ret == False: #print 'End of Video' break currentFrame = imageTools.grayBlur(frame) currentFrame2 = imageTools.grayBlur(frame) diffpix = imageTools.diffImage(storedFrame,currentFrame2,pixThreshold,displayDiffs) diff = imageTools.trackdiffImage(storedMode,currentFrame,pixThreshold,displayDiffs) #cv2.imwrite(videoStream + '_diffimage_' + str(i) + ".png", diff) diff.dtype = np.uint8 contours,hierarchy = cv2.findContours(diff, cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE) area = 20 fishfilter_top = [] for t in contours: if area <= cv2.contourArea(t) < 200: (x,y), r = cv2.minEnclosingCircle(t) center = (int(x),int(y)) fishfilter_top.append(center) # fishfiltertop = [cv2.minEnclosingCircle(t)[0] for t in contours if area <= cv2.contourArea(t) < 50] if i == 0: f_t = [Fish(i, fish) for fish in fishfilter_top] # print([pr.location for pr in p_t]) number_of_colors = len(f_t) else: for n in f_t: n.nearby(fishfilter_top) newfish_t = [Fish(i, cord) for cord in fishfilter_top] #if i == 1: # print([pr.location for pr in newfish_t]) # print(len(newfish_t)) f_t = f_t + newfish_t xy_complete = list(filter(lambda x: x.completed, f_t)) completed_t = completed_t + xy_complete f_t = list(filter(lambda x: not x.completed, f_t)) # if i == 100: # cv2.imwrite(videoStream + '_frame_' + str(i) + ".png", frame) # if i == 284: # cv2.imwrite(videoStream + '_frame_' + str(i) + ".png", frame) # if i == 1: # cv2.imwrite(videoStream + '_frame_' + str(i) + ".png", frame) # img = cv2.drawContours(frame, contours, -1, (0, 255, 0), 2) # cv2.imwrite(videoStream + '_contourimage_' + str(i) + ".png", img) MIN_THRESH = 20.0 MIN_THRESH_P = 20.0 roi_dict = {} for r in range(0,numberofwells): roi_dict[r+1] = [] for cs in range(0,len(contours)): #print "area and lenght: ", cv2.contourArea(contours[cs]), cv2.arcLength(contours[cs], True) if cv2.contourArea(contours[cs]) < 1.0: continue if cv2.arcLength(contours[cs],True) < 1.0: continue if cv2.contourArea(contours[cs]) > MIN_THRESH or cv2.arcLength(contours[cs],True) > MIN_THRESH_P: M = cv2.moments(contours[cs]) #print M cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) #print "cX, cY :", cX, cY r=1 c=1 for x in range(0,len(cmaxxs)): #print "cmaxxs: ", cmaxxs[x] if cX > cmaxxs[x]: r=x+1 #print "r: ", r #print "r: ", r for y in range(0, len(cmaxys)): #print "cmaxys: ", cmaxys[x] if cY > cmaxys[y]: c=y+1 # print "c: ", c if c == numberofwells: c = c-1 if r == numberofwells: r = r-1 area = cv2.contourArea(contours[cs]) perim = cv2.arcLength(contours[cs],True) #print (c, numberofcols, c/numberofcols, r, numberofrows, r/numberofrows) #print ("TEST: ", roi_dict[int(r/numberofrows)+1+row[int(c/numberofcols)]], area*perim) # if not roi_dict[int(r/numberofrows)+1+row[int(c/numberofcols)]]: # roi_dict[int(r/numberofrows)+1+row[int(c/numberofcols)]].append((area*perim,cX,cY)) # else: #print ("TEST2") # if roi_dict[int(r/numberofrows)+1+row[int(c/numberofcols)]][0][0] < area*perim: # roi_dict[int(r/numberofrows)+1+row[int(c/numberofcols)]][0] = (area*perim,cX,cY) frame_roi.append(roi_dict) pixcounts = [] pixcounts = np.bincount(roimaskweights, weights=diffpix.ravel()) pixData[i,:] = np.hstack((pixcounts)) counts = [] keys = roi_dict.keys() keys = sorted(keys) for k in keys: #print "k: ", k x = -10000 y = -10000 if roi_dict[k]: x = roi_dict[k][0][1] y = roi_dict[k][0][2] counts.append(x) counts.append(y) cv2.line(storedImage,(x,y),(x,y),(255,255,255),2) # cv2.line(storedImage,(x,y),(x,y),(233,178,101),2) if i == 749: cv2.imwrite(videoStream + '_trackedimagewithlines_' + str(i) + ".png", storedImage) #print len(counts) cenData[i,:] = np.asarray(counts) totalFrames += 1 storedFrame = currentFrame i += 1 # print(len(p_t)) all_xy = [] all_xy = completed_t + f_t all_xy = sorted(all_xy, key=lambda x: len(x.location)) all_xy.reverse() for n in all_xy: n.calcdistance() # print(n.totaldistance) print(n.displacement) all_xy = [fish for fish in all_xy if fish.timestamp + len(fish.location) > 745 and int(fish.displacement) > 10] myFrameNumber = 749 cap = cv2.VideoCapture(videoStream) totalFrames = cap.get(cv2.CAP_PROP_FRAME_COUNT) if myFrameNumber >= 0 & myFrameNumber <= totalFrames: cap.set(cv2.CAP_PROP_POS_FRAMES,myFrameNumber) ret, frame = cap.read() # cv2.imwrite("lastframe.png", frame) image = plt.imread('lastframefilter.png') # implot = plt.imshow(image) # colours = [] # for i in range(number_of_colors): # r = random.randint(0,255) # g = random.randint(0,255) # b = random.randint(0,255) # rgb = tuple([r,g,b]) # colours.append(rgb) plt.figure(figsize=(20,20)) implot = plt.imshow(image) # fig,ax = plt.subplots(1) # ax.set_aspect('equal') # ax.axis('off') for i,fish in enumerate(all_xy): # print(fish.location) xylist = [list(num) for num in fish.location] newlist = [] newlist.append(xylist[0]) for j in range(0,len(xylist)-1): distance = math.sqrt((xylist[j+1][0]-xylist[j][0])*(xylist[j+1][0]-xylist[j][0]) + (xylist[j+1][1]-xylist[j][1])*(xylist[j+1][1]-xylist[j][1])) if distance > -1: newlist.append(xylist[j+1]) xlist = [x[0] for x in newlist] ylist = [y[1] for y in newlist] r = float(random.randint(0,255)/255) g = float(random.randint(0,255)/255) b = float(random.randint(0,255)/255) num = round(random.uniform(0, 3), 2) palette = sns.cubehelix_palette(n_colors=6, start=num, rot=0, gamma=0.3, hue=0.8, light=1, dark=0, reverse=False, as_cmap=True) # palette = sns.light_palette((r, g, b), n_colors=1, reverse=False, as_cmap=True) plt.scatter(xlist,ylist, s=6, c=list(range(0,len(newlist))), cmap=palette) # for j,num in fish.location: # print(type(j)) # coord = list(num) # plt.scatter(coord[0],coord[1], s=1, cmap=palette # cv2.line(image,num,num,cmap[j],2) # if i == number_of_colors: # r = random.randint(0,255) # g = random.randint(0,255) # b = random.randint(0,255) # rgb = tuple([r,g,b]) # colours.append(rgb) # number_of_colors += 1 # cv2.imwrite("newimage.png", image) plt.savefig("omrlighttodark_forward.png") # print(len(all_xy)) file = open(videoStream + ".centroid2",'w') for x in range(0,750): for y in range(0,1): file.write(str(int(cenData[x,:][y])) + '\n') pixData = pixData[:i,:] pixData = pixData[:,1:] # get rid of background column file = open(videoStream + ".motion2",'w') #file.write("12/8/2015" + '\015') for x in range(0,750): for y in range(0,numberofwells): file.write(str(int(pixData[x,:][y])) + '\n') # vidInfo = {} # release camera cap.release() cv2.destroyAllWindows()
def main(pixThreshold, frameRate, videoStream): expDuration = 600000 # duration of experiment, in seconds; only relevant for live feed saveFreq = 4500 # how often to save data, in frames i, m = imageTools.loadImageAndMask() # convert mask to integer values for bincount weights m, w = imageTools.convertMaskToWeights(m) #print m,w moviedeq = [] i2 = 0 for file in glob.glob("*_4*avi"): if i2 == 15: break #for x in range(0,5): # start camera or open video videoType, displayDiffs = imageTools.getVideoType(videoStream) # print "testing: ", file #print "testing: ", videoStream.split('-')[x] cap = cv2.VideoCapture(file) #cap = cv2.VideoCapture(videoStream.split('-')[x]) # adjust video resolution if necessary (sized to mask) # print 'Camera resolution is %s x %s' % (str(m.shape[1]),str(m.shape[0])) # cap.set(3,m.shape[1]) # cap.set(4,m.shape[0]) # Set Pixel Threshold ret, frame = cap.read() storedFrame = imageTools.grayBlur(frame) #pixThreshold = int(np.floor( pixThreshold * storedFrame.shape[0] )) #print('PixelThreshold is %i') % pixThreshold # Acquire data if saveFreq / frameRate > expDuration: # do shorter of expDuration vs. saveFreq saveFreq = expDuration * frameRate pixData = np.zeros([saveFreq, len(np.unique(w)) + 1]) #i = 0 # a counter for saving chunks of data totalFrames = 0 startTime = datetime.now() oldTime = startTime elapsed = 0 print('Analyzing motion data...') #moviedeq = [] while (cap.isOpened()): ret, frame = cap.read() if ret == False: print 'End of Video' break currentFrame = imageTools.grayBlur(frame) moviedeq.append(currentFrame) # stop experiment if user presses 'q' or if experiment duration is up if (cv2.waitKey(1) & 0xFF == ord('q') or len(sys.argv) == 1 and datetime.now() > startTime + timedelta(seconds=expDuration)): break # record pixel differences in all of the ROIs #diff = imageTools.diffImage(storedFrame,currentFrame,pixThreshold,0) timeDiff = 1. / frameRate elapsed = elapsed + timeDiff # print elapsed # calculate and record pixel differences #counts = np.bincount(w, weights=diff.ravel()) # print counts # output #pixData[i,:] = np.hstack((elapsed,counts)) totalFrames += 1 storedFrame = currentFrame # comment out if nothing is in first frame #oldTime = newTime i2 += 1 # done recording. Remove empty rows (those bigger than i) from PixData #pixData = pixData[:i,:] #print pixData testing = calc_mode(moviedeq, np.zeros([660, 1088])) print "saving mode.png" cv2.imwrite('mode.png', testing) # Save info (elapsed time and framerate) for later use vidInfo = {} # analysisTime = timeStamp - startTime # vidInfo['analysisTime'] = float(str(analysisTime.seconds) + '.' + str(analysisTime.microseconds)) # vidInfo['TotalFrames'] = totalFrames # vidInfo['fps'] = int(totalFrames/vidInfo['analysisTime']) # #vidInfo['pixThreshold']=pixThreshold # vidInfo['CameraResolution']='%s x %s' % (str(m.shape[1]),str(m.shape[0])) #vidInfo['NamePrefix'] = videoStream.split('-')[x] #vidInfo['NamePrefix'] = videoStream.split('.')[0] # print ('Analyzed %i frames in %f seconds') % (vidInfo['TotalFrames'],vidInfo['analysisTime']) # print('FrameRate is about %i fps') % vidInfo['fps'] # print 'Motion threshold is %i pixels' % int(pixThreshold) # print 'Camera resolution is %s' % vidInfo['CameraResolution'] # release camera cap.release() cv2.destroyAllWindows() return vidInfo