コード例 #1
0
ファイル: turing_test.py プロジェクト: vtaranti/HistoGAN
def get_best_images(input_folder_real, input_folder_synthetic, num_images,
                    output_folder):
    # Count the number of images that have been saved
    counter = 1

    # Create output folder
    if not os.path.exists(output_folder):
        os.makedirs(output_folder)

    # Gather synthetic image paths
    synthetic_images = os.listdir(input_folder_synthetic)
    random.shuffle(synthetic_images)

    # Loop through synthetic images
    for image in synthetic_images:
        # Make sure image is compatible
        if '.html' in image:
            continue

        # Full path of real image and synthetic image
        current_image_path_real = join(input_folder_real, image)
        current_image_path_fake = join(input_folder_synthetic, image)

        # Load images
        current_image_real = image_class(current_image_path_real)
        current_image_fake = image_class(current_image_path_fake)

        # Check the number of images that have been saved
        if counter > num_images:
            return

        current_image_fake.save_image(join(output_folder, image))
        counter += 1
コード例 #2
0
def generate_more_images(input_folder, output_folder, num_images):
    # Counter for number of images
    counter = 1
    os.makedirs(output_folder, exist_ok=True)
    # Loop through input folder
    list_dir = os.listdir(input_folder)
    for (image1, image2) in product(list_dir, list_dir):
        # Make sure images are different
        if image1 == image2:
            continue
        # Check number of images saved
        if counter > num_images:
            return
        # Read in the images
        image1_load = image_class(join(input_folder, image1))
        image2_load = image_class(join(input_folder, image2))
        # Combine the images
        result = image1_load.combine(image2_load)
        # Save the result
        dest_name = "{}__{}{}".format(image1, image2, counter)
        imsave(join(output_folder, dest_name), result)
        counter += 1
コード例 #3
0
def get_stats(input_folder):
    # Empty lists for necessary statistics
    side_lengths = []
    pixel_areas = []
    sizes_bytes = []

    # Loop through images
    for each in os.listdir(input_folder):
        # Current image
        current_image_path = os.path.join(input_folder, each)
        current_image = image_class(current_image_path)

        # Add in the statistics
        side_lengths.append(current_image.get_side_lengths()[0])  # Width
        side_lengths.append(current_image.get_side_lengths()[1])  # Height
        pixel_areas.append(current_image.get_area())  # Area
        sizes_bytes.append(current_image.get_size())  # Size

    return side_lengths, pixel_areas, sizes_bytes
コード例 #4
0
ファイル: image_load.py プロジェクト: cannonja/jc2
    sys.path.append(os.path.join(base1, 'MNIST_Load'))
    sys.path.append(os.path.join(base1, 'Rozell'))
    sys.path.append(os.path.join(base1, 'Image_Class'))
    os.chdir(os.path.join(base1, 'MNIST_Load'))
    file_path = base1 + '/Test/DB Classifier/Overnight run'
    dict1_path = file_path + '/orig_dict.png'
    dict2_path = file_path + '/trained_dict.png'
    dict3_path = file_path + '/trained_data.csv'
    write_path = file_path + '/resid_data.csv'
    plot_path = file_path + '/resid_plot.png'

import image_class as ic


##Read image and convert to numpy array
im = ic.image_class(nat_path + '\\city3.jpg')
#patches = im.slice_patches()
patches = im.slice_random(50)
print (len(patches), patches[0].shape)



'''
array.flags.writeable = True

##Set RGB to zero
array[:,:,0] = 0   #R
#array[:,:,1] = 0  #G
array[:,:,2] = 0   #B

コード例 #5
0
ファイル: Mittensgui.py プロジェクト: schwerdt/AdventureGame
find_new_target = True  #determines whether the antogonist should find a new target. Set to false after target is chosen.
new_circle = True #determines whether the antogonist should change the circle (radius/center) it is tracking

#logical to choose motion
move_in_circle = False
#Create a display surface
screen = pygame.display.set_mode(SCREEN_SIZE,0,32) #Returns a surface object (the window)
pygame.display.set_caption("Grass Adventures")

#Create background and rescale the image size
background = pygame.image.load('grass_sideview.jpg').convert()
background_size = background.get_size()
background = pygame.transform.scale(background,(int(2*background_size[0]),int(2*background_size[1])))

#Get picture of Mittens
Mittens_image = image_class.image_class('Mittens.png',0.1,[100,100])
Sunny_image = image_class.image_class('Sunny_Snow.png',0.45,[300,300])

#Create lists of flower and animal images
flower_list = []
hyacinth_image = image_class.image_class('hyacinths.png',0.1,[200,200])
lily_image = image_class.image_class('lilyplant.png',0.5,[500,500])
callalily_image = image_class.image_class('callalily.png',0.5,[700,200])
flower_list.append(hyacinth_image)
flower_list.append(lily_image)
flower_list.append(callalily_image)

animal_list = []
bunny_image = image_class.image_class('babybunny.png',0.4,[200,600])
bluebird_image = image_class.image_class('bluebird.png',0.4,[700,100])
animal_list.append(bunny_image)
コード例 #6
0
    fpr0=[]
    fpr1=[]

    fnr0=[]
    fnr1=[]

    sp0=[]
    sp1=[]

    recall0=[]
    recall1=[]
    recall_av=[]
    presicion0=[]
    presicion1=[]
    presicion_av=[]
    img_class=image_class(test_CTs,test_GTVs,test_Torso,test_penalize
                     ,bunch_of_images_no=20,is_training=1,patch_window=ct_cube_size,gtv_patch_window=gtv_cube_size )



    for img_indx in range(1,len(test_CTs)):
        print('img_indx:%s' %(img_indx))
        ss = str(test_CTs[img_indx]).split("/")
        name = ss[8] + '_' + ss[9]
        name = (ss[8] + '_' + ss[9] + '_' + ss[10].split('%')[0]).split('_CT')[0]
        [CT_image, GTV_image, Torso_image,
         volume_depth, voxel_size, origin, direction] = _rd.read_image_seg_volume(test_CTs,
                                                                                  test_GTVs,
                                                                                  test_Torso,
                                                                                  img_indx,
                                                                                  ct_cube_size,
                                                                                  gtv_cube_size)
コード例 #7
0
ファイル: walt_compare.py プロジェクト: cannonja/jc2
    dict1_path = file_path + '/orig_dict.png'
    dict2_path = file_path + '/trained_dict.png'
    dict3_path = file_path + '/trained_data.csv'
    write_path = file_path + '/resid_data.csv'
    plot_path = file_path + '/resid_plot.png'
    nat_path = base1 + '/Rozell/Natural_images'


import mnist_load as mnist
import r_network_class as Lca_jack
import image_class as ic

num_rfields = 50
num_patches = 3000
im_dims = (8,8,3)  #Patch shape
nat_image = ic.image_class(nat_path + '/' + 'city2.jpg')

## Get patches and set Lca variables
training_data = nat_image.slice_patches()[:num_patches]
random.shuffle(training_data)
X = np.zeros((num_patches, np.product(im_dims)))
for i in range(len(training_data)):
    X[i, :] = training_data[i].flatten()
net = Lca(num_rfields, tAlpha=0.8, tLambda=1.0)
net.init(np.product(im_dims),num_rfields)

## Use my Lca class to save pre dictionary
before = np.array(np.array(net._crossbar.copy()))
d1 = Lca_jack.r_network(np.array(net._crossbar))
d1.set_dim(im_dims)
d1.save_dictionary(5, 10, dict1_path)
コード例 #8
0
ファイル: compress.py プロジェクト: vtaranti/HistoGAN
# Changing image dimensions
compress = args.compress

# Change image brightness
brightness = args.increase_brightness

os.makedirs(args.output_folder, exist_ok=True)

for each in os.listdir(args.input_folder):
    if args.no_filter_dups is False and "dup" in each:
        continue
    if each.startswith(.) or each.endswith('.html'):
        continue

    filepath = os.path.join(args.input_folder, each)
    current_image = image_class(filepath)
    if compress is True:
        current_image.compress(args.compression_factor)
    if brightness is True:
        current_image.increase_brightness(75)
    if add_AtoB is True:
        # For real images
        # This output path is specific to our project, if you are using
        # our code you should specify your own paths
        output_path = os.path.join(
            args.output_folder,
            "AtoB_{}.jpg".format(splitext(each)[0]))
        imsave(output_path, current_image.get_image())
    else:
        # For fake images
        # This output path is specific to our project, if you are using