コード例 #1
0
ファイル: cifar10_model.py プロジェクト: zgsxwsdxg/AdvBox
def inference_network():
    # The image is 32 * 32 with RGB representation.
    data_shape = [3, 32, 32]
    images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')

    #可选的resnet深度20, 32, 44, 56, 110, 1202
    '''
    实验数据
    深度为32
    Test with Pass 9, Loss 0.86, Acc 0.76
    深度为110
    Test with Pass 9, Loss 0.76, Acc 0.76
    '''
    predict = resnet_cifar10(images, 32)

    return predict
コード例 #2
0
def main(use_cuda):
    """
    Advbox demo which demonstrate how to use advbox.
    """
    TOTAL_NUM = 500
    IMG_NAME = 'img'
    LABEL_NAME = 'label'

    img = fluid.layers.data(name=IMG_NAME, shape=[3, 32, 32], dtype='float32')
    # gradient should flow
    img.stop_gradient = False
    label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64')
    logits = resnet_cifar10(img, 32)
    cost = fluid.layers.cross_entropy(input=logits, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    #根据配置选择使用CPU资源还是GPU资源
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    exe = fluid.Executor(place)

    BATCH_SIZE = 1

    test_reader = paddle.batch(paddle.reader.shuffle(
        paddle.dataset.cifar.test10(), buf_size=128 * 10),
                               batch_size=BATCH_SIZE)

    fluid.io.load_params(exe,
                         "cifar10/resnet/",
                         main_program=fluid.default_main_program())

    # advbox demo
    m = PaddleModel(fluid.default_main_program(),
                    IMG_NAME,
                    LABEL_NAME,
                    logits.name,
                    avg_cost.name, (0, 255),
                    channel_axis=0)

    #形状为[1,28,28] channel_axis=0  形状为[28,28,1] channel_axis=2
    attack = SinglePixelAttack(m)

    attack_config = {"max_pixels": 32 * 32}

    # use test data to generate adversarial examples
    total_count = 0
    fooling_count = 0
    for data in test_reader():
        total_count += 1
        img = data[0][0]
        img = np.reshape(img, [3, 32, 32])

        adversary = Adversary(img, data[0][1])
        #adversary = Adversary(data[0][0], data[0][1])

        # SinglePixelAttack non-targeted attack
        adversary = attack(adversary, **attack_config)

        if adversary.is_successful():
            fooling_count += 1
            print(
                'attack success, original_label=%d, adversarial_label=%d, count=%d'
                % (data[0][1], adversary.adversarial_label, total_count))
        else:
            print('attack failed, original_label=%d, count=%d' %
                  (data[0][1], total_count))

        if total_count >= TOTAL_NUM:
            print(
                "[TEST_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f"
                % (fooling_count, total_count,
                   float(fooling_count) / total_count))
            break
    print("SinglePixelAttack attack done")
コード例 #3
0
def main(use_cuda):
    """
    Advbox demo which demonstrate how to use advbox.
    """
    TOTAL_NUM = 500
    IMG_NAME = 'img'
    LABEL_NAME = 'label'

    img = fluid.layers.data(name=IMG_NAME, shape=[3, 32, 32], dtype='float32')
    # gradient should flow
    img.stop_gradient = False
    label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64')

    # logits = mnist_cnn_model(img)
    # logits = vgg_bn_drop(img)
    logits = resnet_cifar10(img, 32)

    cost = fluid.layers.cross_entropy(input=logits, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    #根据配置选择使用CPU资源还是GPU资源
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

    BATCH_SIZE = 1
    test_reader = paddle.batch(paddle.dataset.cifar.test10(),
                               batch_size=BATCH_SIZE)

    fluid.io.load_params(exe,
                         "cifar10/resnet",
                         main_program=fluid.default_main_program())

    # advbox demo
    m = PaddleModel(fluid.default_main_program(),
                    IMG_NAME,
                    LABEL_NAME,
                    logits.name,
                    avg_cost.name, (-1, 1),
                    channel_axis=1)
    # attack = FGSM(m)
    attack = DeepFoolAttack(m)
    # attack = FGSMT(m)
    # attack_config = {"epsilons": 0.3}
    attack_config = {"iterations": 100, "overshoot": 9}
    # use test data to generate adversarial examples
    total_count = 0
    fooling_count = 0
    for data in test_reader():
        total_count += 1
        adversary = Adversary(data[0][0], data[0][1])

        # FGSM non-targeted attack
        adversary = attack(adversary, **attack_config)

        # FGSMT targeted attack
        # tlabel = 0
        # adversary.set_target(is_targeted_attack=True, target_label=tlabel)
        # adversary = attack(adversary, **attack_config)

        if adversary.is_successful():
            fooling_count += 1
            print(
                'attack success, original_label=%d, adversarial_label=%d, count=%d'
                % (data[0][1], adversary.adversarial_label, total_count))
            # plt.imshow(adversary.target, cmap='Greys_r')
            # plt.show()
            # np.save('adv_img', adversary.target)
        else:
            print('attack failed, original_label=%d, count=%d' %
                  (data[0][1], total_count))

        if total_count >= TOTAL_NUM:
            print(
                "[TEST_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f"
                % (fooling_count, total_count,
                   float(fooling_count) / total_count))
            break
    # print("fgsm attack done")
    print("deelfool attack done")