""" trainingDataset = "DataSets/OCR/characters/cmr_hex.xml" maxTrainingCycles = 20 testingDataset = "DataSets/OCR/characters/cmr_hex.xml" import dataset_readers as data import image_encoders as encoder from nupic.research.spatial_pooler import SpatialPooler from vision_testbench import VisionTestBench from classifiers import exactMatch if __name__ == "__main__": # Get training images and convert them to vectors. trainingImages, trainingTags = data.getImagesAndTags(trainingDataset) trainingVectors = encoder.imagesToVectors(trainingImages) # Instantiate the python spatial pooler sp = SpatialPooler( inputDimensions=32**2, # Size of image patch columnDimensions=16, # Number of potential features potentialRadius=10000, # Ensures 100% potential pool potentialPct=1, # Neurons can connect to 100% of input globalInhibition=True, localAreaDensity=-1, # Using numActiveColumnsPerInhArea #localAreaDensity = 0.02, # one percent of columns active at a time #numActiveColumnsPerInhArea = -1, # Using percentage instead numActiveColumnsPerInhArea=1, # Only one feature active at a time # All input activity can contribute to feature output stimulusThreshold=0, synPermInactiveDec=0.3,
trainingDataset = "DataSets/OCR/characters/cmr_hex.xml" maxTrainingCycles = 20 testingDataset = "DataSets/OCR/characters/cmr_hex.xml" import dataset_readers as data import image_encoders as encoder from nupic.research.spatial_pooler import SpatialPooler from vision_testbench import VisionTestBench from classifiers import exactMatch if __name__ == "__main__": # Get training images and convert them to vectors. trainingImages, trainingTags = data.getImagesAndTags(trainingDataset) trainingVectors = encoder.imagesToVectors(trainingImages) # Instantiate the python spatial pooler sp = SpatialPooler( inputDimensions = 32**2, # Size of image patch columnDimensions = 16, # Number of potential features potentialRadius = 10000, # Ensures 100% potential pool potentialPct = 1, # Neurons can connect to 100% of input globalInhibition = True, localAreaDensity = -1, # Using numActiveColumnsPerInhArea #localAreaDensity = 0.02, # one percent of columns active at a time #numActiveColumnsPerInhArea = -1, # Using percentage instead numActiveColumnsPerInhArea = 1, # Only one feature active at a time # All input activity can contribute to feature output stimulusThreshold = 0, synPermInactiveDec = 0.3,