コード例 #1
0
def plot_coverage_maps(coverage_map, original_uv_fits_path,
                       original_cc_fits_path, data_dir, outname,
                       path_to_script):
    i_image_cc = create_clean_image_from_fits_file(original_cc_fits_path)
    i_image = create_image_from_fits_file(original_cc_fits_path)
    rms = rms_image_shifted(original_uv_fits_path,
                            tmp_dir=data_dir,
                            image_fits=original_cc_fits_path,
                            path_to_script=path_to_script)
    blc, trc = find_bbox(i_image.image,
                         2 * rms,
                         delta=int(i_image_cc._beam.bmaj / 2))
    fig = iplot(i_image.image,
                coverage_map - 0.68,
                x=i_image.x,
                y=i_image.y,
                min_abs_level=2. * rms,
                outdir=data_dir,
                beam=i_image_cc.beam,
                show=True,
                beam_place='lr',
                show_beam=True,
                cmap='viridis',
                blc=blc,
                trc=trc,
                color_clim=[-0.3, 0.3],
                colors_mask=i_image.image < 2 * rms)
    fig.savefig(os.path.join(data_dir, '{}.pdf'.format(outname)),
                bbox_inches='tight',
                format='pdf',
                dpi=600)
コード例 #2
0
ファイル: paper_pics.py プロジェクト: akutkin/SACA
for i, boot_uv in enumerate(sorted(booted_uv_fits)):
    clean_difmap(boot_uv,
                 'booted_cc_{}.fits'.format(i),
                 'I', (512, 0.1),
                 path=data_dir,
                 path_to_script=path_to_script,
                 outpath=data_dir)
booted_im_fits = glob.glob(os.path.join(data_dir, 'booted_cc*.fits'))

images = Images()
images.add_from_fits(booted_im_fits)
error_image = images.create_error_image()

orig_image = create_clean_image_from_fits_file(os.path.join(data_dir, im_fits))
rms = rms_image_shifted(os.path.join(data_dir, uv_fits),
                        image_fits=os.path.join(data_dir, im_fits),
                        path_to_script=path_to_script)
blc, trc = find_bbox(orig_image.image, level=1.5 * rms)
image_mask = orig_image.image < 2 * rms
label_size = 14
matplotlib.rcParams['xtick.labelsize'] = label_size
matplotlib.rcParams['ytick.labelsize'] = label_size
matplotlib.rcParams['axes.titlesize'] = label_size
matplotlib.rcParams['axes.labelsize'] = label_size
matplotlib.rcParams['font.size'] = label_size
matplotlib.rcParams['legend.fontsize'] = label_size
# 3c273
# fig = iplot(orig_image.image, error_image.image/rms, x=orig_image.x,
#             y=orig_image.y, show_beam=True, min_abs_level=2*rms, cmap='hsv',
#             beam=orig_image.beam, colors_mask=image_mask,
#             beam_face_color='black', blc=(495, 385), trc=(680, 540))
コード例 #3
0
ファイル: power_analysis.py プロジェクト: akutkin/SACA
def create_coverage_map_classic(original_uv_fits_path,
                                ci_type,
                                original_cc_fits_path=None,
                                imsize=None,
                                outdir=None,
                                n_boot=200,
                                path_to_script=None,
                                alpha=0.68,
                                n_cov=100,
                                n_rms=1.,
                                stokes='I',
                                sample_cc_fits_paths=None,
                                sample_uv_fits_paths=None):
    """
    Conduct coverage analysis of image pixels flux CI. Find number of times
    when CI of `sample` values contains `true` value.

    :param original_uv_fits_path:
        Path to original FITS-file with uv-data.
    :param ci_type:
        Type of CI to test. ``boot`` or ``rms``. If ``boot`` then use residuals
        bootstrap CI. If ``rms`` then use Hovatta corrected image rms CI.
    :param original_cc_fits_path: (optional)
        Path to original FITS-file with CC model. If ``None`` then use
        ``imsize`` parameter to get `original` CC model from
        ``original_uv_fits_path``. (default: ``None``)
    :param imsize: (optional)
        Image parameters (image size [pix], pixel size [mas]) to use
        when doing first CC with ``original_cc_fits_path = None``. (default:
        ``None``)
    :param outdir: (optional)
        Directory to store intermediate results. If ``None`` then use CWD.
        (default: ``None``)
    :param n_boot: (optional)
        Number of bootstrap replications to use when calculating bootstrap CI
        for ``ci_type = boot`` option when ``boot_cc_fits_paths`` hasn't
        specified. (default: ``200``)
    :param path_to_script: (optional)
        Path to Dan Homan's script for final clean. If ``None`` then use CWD.
        (default: ``None``)
    :param alpha: (optional)
        Level of significance when calculating bootstrap CI for ``ci_type =
        boot`` case. E.g. ``0.68`` corresponds to `1 \sigma`. (default:
        ``0.68``)
    :param n_cov: (optional)
        Number of `samples` from infinite population to consider in coverage
        analysis of intervals. Here `samples` - observations of known source
        with different realisations of noise with known parameters. (default:
         ``100``)
    :param n_rms: (optional)
        Number of rms to use in ``ci_type = rms`` case. (default: ``1.``)
    :param stokes: (optional)
        Stokes parameter to use. If ``None`` then use ``I``. (default: ``None``)
    :param boot_cc_fits_paths: (optional)
        If ``ci_type = boot`` then this parameter could specify paths to cleaned
        bootstrapped uv-data.
    :param sample_uv_fits_paths: (optional)
        Path to FITS-files with `sample` uv-data. If ``None`` then create
        ``n_cov`` `sample` uv-data from noise of `original` uv-data and
        `original` CLEAN model. (default: ``None``)
    :param sample_cc_fits_paths: (optional)
        Path to FITS-files with CLEAN models of `sample` uv-data. If ``None``
        then create ``n_cov`` `sample` uv-data from noise of `original` uv-data
        and `original` CLEAN model. (default: ``None``)

    :return:
        Coverage map. Each pixel contain frequency of times when CI for samples
        from population contain `true` value for given pixel.

    """
    if original_cc_fits_path is None:
        print(
            "No `original` CLEAN model specified! Will CLEAN `original`"
            " uv-data.")
        if imsize is None:
            raise Exception("Specify ``imsize``")
        uv_fits_dir, uv_fits_fname = os.path.split(original_uv_fits_path)
        print("Cleaning `original` uv-data to"
              " {}".format(os.path.join(outdir, 'original_cc.fits')))
        clean_difmap(uv_fits_fname,
                     'original_cc.fits',
                     stokes,
                     imsize,
                     path=uv_fits_dir,
                     path_to_script=path_to_script,
                     outpath=outdir)
        original_cc_fits_path = os.path.join(outdir, 'original_cc.fits')

    # Find images parameters for cleaning if necessary
    if imsize is None:
        print(
            "Getting image parameters from `original`"
            " CLEAN FITS file {}.".format(original_cc_fits_path))
        image_params = get_fits_image_info(original_cc_fits_path)
        imsize = (image_params['imsize'][0],
                  abs(image_params['pixsize'][0]) / mas_to_rad)

    # This is `true` values. Will check how often they arise in `sample` CIs.
    original_image = create_image_from_fits_file(original_cc_fits_path)
    # If `sample` data doesn't ready - create it!
    if sample_uv_fits_paths is None:
        # Create `sample`
        sample_uv_fits_paths, sample_cc_fits_paths =\
            create_sample(original_uv_fits_path,
                          original_cc_fits_path=original_cc_fits_path,
                          imsize=imsize, outdir=outdir,
                          path_to_script=path_to_script, n_sample=n_cov,
                          stokes=stokes)

    # For each pixel check how often CI of `sample` images contains `model`]
    # values.
    print("Creating coverage array")
    cov_array = np.zeros((imsize[0], imsize[0]), dtype=float)
    # Testing coverage of bootstrapped CI
    # For each `sample` uv-data and model generate bootstrap CI
    print sample_uv_fits_paths
    print sample_cc_fits_paths
    for sample_cc_fits_path, sample_uv_fits_path in zip(
            sample_cc_fits_paths, sample_uv_fits_paths):
        print("Sample : {}".format(sample_cc_fits_path))
        if ci_type == 'boot':
            n__ = sample_uv_fits_path.split('.')[0].split('_')[-1]
            n_ = sample_cc_fits_path.split('.')[0].split('_')[-1]
            assert n_ == n__
            print(
                "Bootstrapping sample uv-data {} with sample model {} using"
                " {} replications".format(sample_uv_fits_path,
                                          sample_cc_fits_path, n_boot))

            print("Removing old bootstrapped files...")
            boot_cc_fits_paths = glob.glob(
                os.path.join(outdir, 'sample_cc_boot_*.fits'))
            for rmfile in boot_cc_fits_paths:
                print("Removing CC file {}".format(rmfile))
                os.unlink(rmfile)
            boot_uv_fits_paths = \
                sorted(glob.glob(os.path.join(outdir, 'sample_uv_boot_*.uvf')))
            for rmfile in boot_uv_fits_paths:
                print("Removing UV file {}".format(rmfile))
                os.unlink(rmfile)

            bootstrap_uv_fits(sample_uv_fits_path, [sample_cc_fits_path],
                              n_boot,
                              outpath=outdir,
                              outname=['sample_uv_boot', '.uvf'])

            boot_uv_fits_paths =\
                sorted(glob.glob(os.path.join(outdir, 'sample_uv_boot_*.uvf')))

            # Clean each bootstrapped uv-data
            for i, uv_fits_path in enumerate(boot_uv_fits_paths):
                uv_fits_dir, uv_fits_fname = os.path.split(uv_fits_path)
                j = uv_fits_fname.split('.')[0].split('_')[-1]
                cc_fname = 'sample_cc_boot_{}.fits'.format(j)
                print("Cleaning {} bootstrapped sample"
                      " uv-data to {}".format(uv_fits_path,
                                              os.path.join(outdir, cc_fname)))
                clean_difmap(uv_fits_fname,
                             cc_fname,
                             stokes,
                             imsize,
                             path=uv_fits_dir,
                             path_to_script=path_to_script,
                             outpath=outdir)

            boot_cc_fits_paths = sorted(
                glob.glob(os.path.join(outdir, 'sample_cc_boot_*.fits')))

            # Calculate bootstrap CI for current `sample`
            # hdi_low, hdi_high = boot_ci_bc(boot_cc_fits_paths,
            #                                observed_cc_fits_path, alpha=alpha)
            hdi_low, hdi_high = boot_ci(boot_cc_fits_paths,
                                        sample_cc_fits_path,
                                        alpha=alpha)
        elif ci_type == 'rms':
            # Calculate ``n_rms`` CI
            print("Calculating rms...")
            sample_image = create_image_from_fits_file(sample_cc_fits_path)
            rms = rms_image_shifted(sample_uv_fits_path,
                                    image_fits=sample_cc_fits_path,
                                    path_to_script=path_to_script)
            # rms = rms_image(sample_image)
            hdi_low = sample_image.image - n_rms * rms
            hdi_high = sample_image.image + n_rms * rms
        else:
            raise Exception("CI intervals must be `boot` or `rms`!")

        # Check if `model` value falls in current `sample` CI
        print("Calculating hits of `true` values for"
              " {}".format(sample_cc_fits_path))
        for (x, y), value in np.ndenumerate(cov_array):
            cov_array[x, y] += float(
                np.logical_and(hdi_low[x, y] < original_image.image[x, y],
                               original_image.image[x, y] < hdi_high[x, y]))

    return cov_array / n_cov
コード例 #4
0
ファイル: power_analysis.py プロジェクト: akutkin/SACA
            create_coverage_map_classic(original_uv_fits_path, ci_type=ci_type,
                                        original_cc_fits_path=original_cc_fits_path,
                                        imsize=imsize, outdir=data_dir,
                                        path_to_script=path_to_script,
                                        sample_cc_fits_paths=sample_cc_fits_paths,
                                        sample_uv_fits_paths=sample_uv_fits_paths,
                                        n_rms=n_rms, alpha=alpha, n_boot=n_boot,
                                        n_cov=n_cov, stokes=stokes)
        np.savetxt(os.path.join(data_dir, "{}.txt".format(outfile)),
                   coverage_map)

        original_cc_fits_path = os.path.join(data_dir, 'original_cc.fits')
        i_image_cc = create_clean_image_from_fits_file(original_cc_fits_path)
        i_image = create_image_from_fits_file(original_cc_fits_path)
        rms = rms_image_shifted(original_uv_fits_path,
                                tmp_dir=data_dir,
                                image_fits=original_cc_fits_path,
                                path_to_script=path_to_script)
        blc, trc = find_bbox(i_image.image,
                             2 * rms,
                             delta=int(i_image_cc._beam.bmaj / 2))
        # iplot(i_image.image, coverage_map, x=i_image.x, y=i_image.y,
        #       min_abs_level=2. * rms, outfile=outfile, outdir=data_dir,
        #       beam=i_image_cc.beam, show=True, beam_corner='lr',
        #       show_beam=True, cmap='viridis', blc=blc, trc=trc)
        fig = iplot(i_image.image,
                    coverage_map - 0.68,
                    x=i_image.x,
                    y=i_image.y,
                    min_abs_level=2. * rms,
                    outfile=outfile,
                    outdir=data_dir,
コード例 #5
0
def process_mf(uvdata_dict,
               beam,
               data_dir,
               path_to_script,
               clean_after=True,
               rms_cs_dict=None,
               mapsize_clean=(512, 0.1)):
    images_dict = dict()
    print(" === CLEANing each band and Stokes ===")
    clean_original_data(uvdata_dict,
                        data_dir,
                        beam,
                        mapsize_clean=mapsize_clean)

    for band in bands:
        images_dict[band] = dict()
        for stokes in ("I", "Q", "U"):
            ccimage = create_clean_image_from_fits_file(
                os.path.join(data_dir, "cc_{}_{}.fits".format(band, stokes)))
            images_dict[band].update({stokes: ccimage})

    # Cacluate RMS for each band and Stokes
    print(" === Cacluate RMS for each band and Stokes ===")
    if rms_cs_dict is None:
        rms_cs_dict = dict()
        for band in bands:
            rms_cs_dict[band] = {
                stokes: rms_image_shifted(os.path.join(data_dir,
                                                       uvdata_dict[band]),
                                          stokes=stokes,
                                          image=images_dict[band][stokes],
                                          path_to_script=path_to_script)
                for stokes in ("I", "Q", "U")
            }
    for band in bands:
        for stokes in ("I", "Q", "U"):
            print("rms = {}".format(rms_cs_dict[band][stokes]))

    # Find mask for "I" for each band and combine them into single mask
    print("Calculating masks for I at each band and combining them")
    spix_mask_image = spix_mask(
        {band: images_dict[band]["I"]
         for band in bands}, {band: rms_cs_dict[band]["I"]
                              for band in bands},
        n_sigma=3,
        path_to_script=path_to_script)

    # Find mask for "PPOL" for each band and combine them into single mask
    print("Calculating masks for PPOL at each band and combining them")
    ppol_mask_image = dict()
    for band in bands:
        ppol_mask_image[band] = pol_mask(
            {stokes: images_dict[band][stokes]
             for stokes in ("I", "Q", "U")},
            {stokes: rms_cs_dict[band][stokes]
             for stokes in ("I", "Q", "U")},
            n_sigma=2,
            path_to_script=path_to_script)
    ppol_mask_image = np.logical_or.reduce(
        [ppol_mask_image[band] for band in bands])

    spix_image, sigma_spix_image, chisq_spix_image =\
        spix_map(freqs, [images_dict[band]["I"].image for band in bands],
                 mask=spix_mask_image)

    print("Calculating PANG and it's error for each band")
    pang_images = dict()
    sigma_pang_images = dict()
    for band in bands:
        pang_images[band] = pang_map(images_dict[band]["Q"].image,
                                     images_dict[band]["U"].image,
                                     mask=ppol_mask_image)
        sigma_pang_images[band] = np.hypot(
            images_dict[band]["Q"].image * 1.8 * rms_cs_dict[band]["U"],
            images_dict[band]["U"].image * 1.8 * rms_cs_dict[band]["Q"])
        sigma_pang_images[band] = sigma_pang_images[band] / (
            2. * (images_dict[band]["Q"].image**2. +
                  images_dict[band]["U"].image**2.))

    print("Calculating ROTM image")
    rotm_image, sigma_rotm_image, chisq_rotm_image = rotm_map(
        freqs, [pang_images[band] for band in bands],
        [sigma_pang_images[band] for band in bands],
        mask=ppol_mask_image)

    if clean_after:
        print("Removing maps")
        for band in bands:
            for stokes in ("I", "Q", "U"):
                os.unlink(
                    os.path.join(data_dir,
                                 "cc_{}_{}.fits".format(band, stokes)))

    result = {
        "ROTM": {
            "value": rotm_image,
            "sigma": sigma_rotm_image,
            "chisq": chisq_rotm_image
        },
        "SPIX": {
            "value": spix_image,
            "sigma": sigma_spix_image,
            "chisq": chisq_spix_image
        },
        "RMS": rms_cs_dict
    }

    return result
コード例 #6
0
    def analyze_rotm_conv(self, sigma_evpa=None, sigma_d_term=None,
                          rotm_slices=None, colors_clim=None, n_sigma=None,
                          pxls_plot=None, plot_points=None, slice_ylim=None):
        print("Estimate RM map and it's error using conventional method...")

        if sigma_evpa is None:
            sigma_evpa = self.sigma_evpa
        if sigma_d_term is None:
            sigma_d_term = self.sigma_d_term
        if rotm_slices is None:
            rotm_slices = self.rotm_slices
        if n_sigma is not None:
            self.set_common_mask(n_sigma)

        # Find EVPA error for each frequency
        print("Calculating maps of PANG errors for each band using Hovatta's"
              " approach...")
        # Fetch common size `I` map on highest frequency for plotting PANG error
        # maps
        i_image = self.cc_cs_image_dict[self.freqs[-1]]['I']

        if pxls_plot is not None:
            pxls_plot = [i_image._convert_coordinate(pxl) for pxl in pxls_plot]

        rms = rms_image(i_image)
        blc, trc = find_bbox(i_image.image, 2.*rms,
                             delta=int(i_image._beam.beam[0]))

        for i, freq in enumerate(self.freqs):
            n_ant = len(self.uvdata_dict[freq].antennas)
            n_if = self.uvdata_dict[freq].nif
            d_term = sigma_d_term[i]
            s_evpa = sigma_evpa[i]

            # Get number of scans
            if self.n_scans is not None:
                try:
                    # If `NX` table is present
                    n_scans = len(self.uvdata_dict[freq].scans)
                except TypeError:
                    scans_dict = self.uvdata_dict[freq].scans_bl
                    scan_lengths = list()
                    for scans in scans_dict.values():
                        if scans is not None:
                            scan_lengths.append(len(scans))
                    n_scans = mode(scan_lengths)[0][0]
            else:
                n_scans = self.n_scans[i]

            q = self.cc_cs_image_dict[freq]['Q']
            u = self.cc_cs_image_dict[freq]['U']
            i = self.cc_cs_image_dict[freq]['I']

            # We need ``s_evpa = 0`` for testing RM gradient significance but
            # ``s_evpa != 0`` for calculating RM errors
            pang_std, ppol_std = hovatta_find_sigma_pang(q, u, i, s_evpa,
                                                         d_term, n_ant, n_if,
                                                         n_scans)
            self.evpa_sigma_dict[freq] = pang_std
            fig = iplot(i_image.image, pang_std, x=i_image.x, y=i_image.y,
                        min_abs_level=3. * rms, colors_mask=self._cs_mask,
                        color_clim=[0, 1], blc=blc, trc=trc,
                        beam=self.common_beam, colorbar_label='sigma EVPA, [rad]',
                        show_beam=True, show=False)
            self.figures['EVPA_sigma_{}'.format(freq)] = fig

        sigma_pang_arrays = [self.evpa_sigma_dict[freq] for freq in self.freqs]
        sigma_pang_arrays_grad = [np.sqrt(self.evpa_sigma_dict[freq]**2 -
                                          np.deg2rad(self.sigma_evpa[i])**2) for
                                  i, freq in enumerate(self.freqs)]
        rotm_image, sigma_rotm_image, chisq_image =\
            self.original_cs_images.create_rotm_image(sigma_pang_arrays,
                                                      mask=self._cs_mask,
                                                      return_chisq=True,
                                                      plot_pxls=pxls_plot,
                                                      outdir=self.data_dir,
                                                      mask_on_chisq=False)
        rotm_image_grad, sigma_rotm_image_grad, _ =\
            self.original_cs_images.create_rotm_image(sigma_pang_arrays_grad,
                                                      mask=self._cs_mask,
                                                      return_chisq=True,
                                                      plot_pxls=pxls_plot,
                                                      outdir=self.data_dir,
                                                      mask_on_chisq=False)
        self._rotm_image_conv = rotm_image
        self._rotm_image_conv_grad = rotm_image_grad
        self._rotm_image_sigma_conv = sigma_rotm_image
        self._rotm_image_sigma_conv_grad = sigma_rotm_image_grad
        self._rotm_chisq_image_conv = chisq_image

        i_image = self.cc_cs_image_dict[self.freqs[-1]]['I']
        uv_fits_path = self.uvfits_dict[self.freqs[-1]]
        image_fits_path = self.cc_cs_fits_dict[self.freqs[-1]]['I']
        # RMS using Hovatta-style
        rms = rms_image_shifted(uv_fits_path, image_fits=image_fits_path,
                                path_to_script=self.path_to_script)
        blc, trc = find_bbox(i_image.image, 2.*rms,
                             delta=int(i_image._beam.beam[0]))
        fig = iplot(i_image.image, rotm_image.image, x=i_image.x, y=i_image.y,
                    min_abs_level=3. * rms, colors_mask=self._cs_mask,
                    color_clim=colors_clim, blc=blc, trc=trc,
                    beam=self.common_beam, slice_points=rotm_slices,
                    show_beam=True, show=False, show_points=plot_points,
                    cmap='viridis')
        self.figures['rotm_image_conv'] = fig
        fig = iplot(i_image.image, sigma_rotm_image.image, x=i_image.x,
                    y=i_image.y, min_abs_level=3. * rms,
                    colors_mask=self._cs_mask, color_clim=[0, 200], blc=blc,
                    trc=trc, beam=self.common_beam, slice_points=rotm_slices,
                    show_beam=True, show=False, cmap='viridis', beam_place='ul')
        self.figures['rotm_image_conv_sigma'] = fig
        fig = iplot(i_image.image, sigma_rotm_image_grad.image, x=i_image.x,
                    y=i_image.y, min_abs_level=3. * rms,
                    colors_mask=self._cs_mask, color_clim=[0, 200], blc=blc,
                    trc=trc, beam=self.common_beam, slice_points=rotm_slices,
                    show_beam=True, show=False, cmap='viridis', beam_place='ul')
        self.figures['rotm_image_conv_sigma_grad'] = fig
        fig = iplot(i_image.image, chisq_image.image, x=i_image.x, y=i_image.y,
                    min_abs_level=3. * rms, colors_mask=self._cs_mask,
                    outfile='rotm_chisq_image_conv', outdir=self.data_dir,
                    color_clim=[0., self._chisq_crit], blc=blc, trc=trc,
                    beam=self.common_beam,
                    colorbar_label='Chi-squared', slice_points=rotm_slices,
                    show_beam=True, show=False, cmap='viridis')
        self.figures['rotm_chisq_image_conv'] = fig

        if rotm_slices is not None:
            self.figures['slices_conv'] = dict()
            for rotm_slice in rotm_slices:
                rotm_slice_ = i_image._convert_coordinates(rotm_slice[0],
                                                           rotm_slice[1])
                # Here we use RM image error calculated using PANG errors
                # without contribution of the EVPA calibration errors.
                fig = analyze_rotm_slice(rotm_slice_, rotm_image,
                                         sigma_rotm_image=sigma_rotm_image_grad,
                                         outdir=self.data_dir,
                                         beam_width=int(i_image._beam.beam[0]),
                                         outfname="ROTM_{}_slice".format(rotm_slice),
                                         ylim=slice_ylim)
                self.figures['slices_conv'][str(rotm_slice)] = fig

        return rotm_image, sigma_rotm_image