コード例 #1
0
def sample_images(dcgan, min_range=-1, max_range=1):
    """Sample images.
    Postconditions:
        saves to image file
    Args:
        dcgan: DCGAN
        min_range: minimum range (must be [-1, 1] and < max_range) [-1]
        max_range: maximum range (must be [-1, 1] and > min_range) [1]
    """
    FLAGS = dcgan.f
    sample_z = np.random.uniform(min_range,
                                 max_range,
                                 size=(FLAGS.sample_size,
                                       FLAGS.z_dim)).astype(np.float32)
    samples = dcgan.sess.run(dcgan.G, feed_dict={dcgan.z: sample_z})
    sample_path = os.path.join(
        './', FLAGS.sample_dir, dcgan.get_model_dir(),
        'test_{0}.png'.format(strftime("%Y-%m-%d %H:%M:%S", gmtime())))
    save_images(samples, sample_path)
コード例 #2
0
def visualize_z(dcgan, min_range=-1, max_range=1):
    """Visualize z dimension.
    For each dimension, vary it and fix the rest to 0.
    Postconditions:
        saves to image files
    Args:
        dcgan: DCGAN
        min_range: minimum range (must be [-1, 1] and < max_range) [-1]
        max_range: maximum range (must be [-1, 1] and > min_range) [1]
    """
    FLAGS = dcgan.f
    range_values = np.arange(min_range, max_range, 1. / FLAGS.sample_size)
    for z in xrange(FLAGS.z_dim):
        sample_z = np.zeros([FLAGS.sample_size, FLAGS.z_dim])
        for i, z_vector in enumerate(sample_z):
            z_vector[z] = range_values[i]

        samples = dcgan.sess.run(dcgan.G, feed_dict={dcgan.z: sample_z})
        sample_path = os.path.join('./', FLAGS.sample_dir,
                                   dcgan.get_model_dir(),
                                   'visualize_z_{0}.png'.format(z))
        save_images(samples, sample_path)
コード例 #3
0
ファイル: train.py プロジェクト: ankushjain01/AACNN-master
def train(aacnn):
    """Train AACNN.

    Preconditions:
        checkpoint, data, logs directories exist

    Postconditions:
        checkpoints are saved
        logs are written

    Args:
        aacnn: AACNN object
    """
    sess = aacnn.sess
    FLAGS = aacnn.f

    # load dataset
    list_file = os.path.join(FLAGS.data_dir, '{0}.txt'.format(FLAGS.dataset))
    if os.path.exists(list_file):
        # load from file when found
        print("Using training list: {0}".format(list_file))
        with open(list_file, 'r') as f:
            data = [
                os.path.join(FLAGS.data_dir, FLAGS.dataset, l.strip())
                for l in f
            ]
    else:
        # recursively walk dataset directory to get images
        data = []
        dataset_dir = os.path.join(FLAGS.data_dir, FLAGS.dataset)
        for root, dirnames, filenames in os.walk(dataset_dir):
            for filename in fnmatch.filter(filenames,
                                           '*.{0}'.format(FLAGS.image_ext)):
                data.append(os.path.join(root, filename))
        shuffle(data)

        # save to file for next time
        with open(list_file, 'w') as f:
            for l in data:
                line = l.replace(dataset_dir + os.sep, '')
                f.write('{0}\n'.format(line))

    assert len(data) > 0, "found 0 training data"
    print("Found {0} training images.".format(len(data)))

    attribute_data = get_attribute(FLAGS)
    attribute_data = attribute_data.astype(float)

    if FLAGS.with_gan:
        learning_rate_decay_d = tf.train.exponential_decay(FLAGS.learning_rate,
                                                           aacnn.global_step_d,
                                                           3000,
                                                           0.8,
                                                           staircase=True)

    learning_rate_decay_g = tf.train.exponential_decay(FLAGS.learning_rate,
                                                       aacnn.global_step_g,
                                                       3000,
                                                       0.8,
                                                       staircase=True)
    # setup RMSProp optimizer
    if FLAGS.with_gan:
        d_optim = tf.train.RMSPropOptimizer(
            learning_rate=learning_rate_decay_d,
            decay=0.99).minimize(aacnn.d_loss,
                                 global_step=aacnn.global_step_d,
                                 var_list=aacnn.d_vars)

    g_optim = tf.train.RMSPropOptimizer(learning_rate=learning_rate_decay_g,
                                        decay=0.99).minimize(
                                            aacnn.g_loss,
                                            global_step=aacnn.global_step_g,
                                            var_list=aacnn.g_vars)

    tf.global_variables_initializer().run()

    # summaries
    if FLAGS.with_gan:
        g_sum = tf.summary.merge([
            aacnn.d_fake_sum, aacnn.g_sum, aacnn.d_loss_fake_sum,
            aacnn.g_loss_sum
        ])
        d_sum = tf.summary.merge([
            aacnn.d_real_sum, aacnn.real_sum, aacnn.d_loss_real_sum,
            aacnn.d_loss_sum
        ])
    else:
        g_sum = tf.summary.merge([aacnn.g_sum, aacnn.g_loss_sum])

    writer = tf.summary.FileWriter(
        os.path.join(FLAGS.log_dir, aacnn.get_model_dir()), sess.graph)

    # training images for sampling
    sample_files = data[0:FLAGS.sample_size]
    sample_attributes = attribute_data[0:FLAGS.sample_size]
    sample = [
        get_image(sample_file, FLAGS.output_size_height,
                  FLAGS.output_size_wight) for sample_file in sample_files
    ]
    sample_images = np.array(sample).astype(np.float32)
    sample_path = os.path.join('./', FLAGS.sample_dir, aacnn.get_model_dir(),
                               'real_samples.png')
    save_images(sample_images, sample_path)

    # run for number of epochs
    counter = 1
    start_time = time.time()
    for epoch in range(FLAGS.epoch):
        num_batches = int(len(data) / FLAGS.batch_size)
        # training iterations
        for batch_index in range(0, num_batches):
            # get batch of images for training
            batch_start = batch_index * FLAGS.batch_size
            batch_end = (batch_index + 1) * FLAGS.batch_size
            batch_files = data[batch_start:batch_end]
            batch_labels = attribute_data[batch_start:batch_end]
            batch_images = [
                get_image(batch_file, FLAGS.output_size_height,
                          FLAGS.output_size_wight)
                for batch_file in batch_files
            ]

            if FLAGS.with_gan:
                # update D network
                _, summary_str = sess.run([d_optim, d_sum],
                                          feed_dict={
                                              aacnn.input: batch_images,
                                              aacnn.input_attribute:
                                              batch_labels
                                          })
                writer.add_summary(summary_str, counter)

                # update G network
                _, summary_str = sess.run([g_optim, g_sum],
                                          feed_dict={
                                              aacnn.input: batch_images,
                                              aacnn.input_attribute:
                                              batch_labels
                                          })
                writer.add_summary(summary_str, counter)

            # update G network again for stability
            _, summary_str = sess.run([g_optim, g_sum],
                                      feed_dict={
                                          aacnn.input: batch_images,
                                          aacnn.input_attribute: batch_labels
                                      })
            writer.add_summary(summary_str, counter)

            # compute errors
            if FLAGS.with_gan:
                errD_fake = aacnn.d_loss_fake.eval({
                    aacnn.input:
                    batch_images,
                    aacnn.input_attribute:
                    batch_labels
                })
                errD_real = aacnn.d_loss_real.eval({
                    aacnn.input:
                    batch_images,
                    aacnn.input_attribute:
                    batch_labels
                })
            errG = aacnn.g_loss.eval({
                aacnn.input: batch_images,
                aacnn.input_attribute: batch_labels
            })

            # increment global counter (for saving models)
            counter += 1

            # print stats
            if FLAGS.with_gan:
                print(
                    "[train] epoch: {0}, iter: {1}/{2}, time: {3}, d_loss: {4}, g_loss: {5}"
                    .format(epoch, batch_index, num_batches,
                            time.time() - start_time, errD_fake + errD_real,
                            errG))
            else:
                print(
                    "[train] epoch: {0}, iter: {1}/{2}, time: {3}, g_loss: {4}"
                    .format(epoch, batch_index, num_batches,
                            time.time() - start_time, errG))

            # sample every 100 iterations
            if np.mod(counter, 100) == 1:
                if FLAGS.with_gan:
                    samples, d_loss, g_loss = aacnn.sess.run(
                        [aacnn.G, aacnn.d_loss, aacnn.g_loss],
                        feed_dict={
                            aacnn.input: sample_images,
                            aacnn.input_attribute: sample_attributes
                        })
                    print(
                        "[sample] time: {0}, d_loss: {1}, g_loss: {2}".format(
                            time.time() - start_time, d_loss, g_loss))
                else:
                    samples, g_loss = aacnn.sess.run(
                        [aacnn.G, aacnn.g_loss],
                        feed_dict={
                            aacnn.input: sample_images,
                            aacnn.input_attribute: sample_attributes
                        })
                    print("[sample] time: {0}, g_loss: {1}".format(
                        time.time() - start_time, g_loss))

                # save samples for visualization
                sample_path = os.path.join(
                    './', FLAGS.sample_dir, aacnn.get_model_dir(),
                    'train_{0:02d}_{1:04d}.png'.format(epoch, batch_index))
                save_images(samples, sample_path)

            # save model every 500 iterations
            if np.mod(counter, 500) == 2:
                aacnn.save(counter)
                print("[checkpoint] saved: {0}".format(time.time() -
                                                       start_time))

    # save final model
    aacnn.save(counter)
    print("[checkpoint] saved: {0}".format(time.time() - start_time))
コード例 #4
0
ファイル: train.py プロジェクト: mqtlam/dcgan-tfslim
def train(dcgan):
    """Train DCGAN.

    Preconditions:
        checkpoint, data, logs directories exist

    Postconditions:
        checkpoints are saved
        logs are written

    Args:
        dcgan: DCGAN object
    """
    sess = dcgan.sess
    FLAGS = dcgan.f

    # load dataset
    list_file = os.path.join(FLAGS.data_dir, '{0}.txt'.format(FLAGS.dataset))
    if os.path.exists(list_file):
        # load from file when found
        print "Using training list: {0}".format(list_file)
        with open(list_file, 'r') as f:
            data = [os.path.join(FLAGS.data_dir,
                                 FLAGS.dataset, l.strip()) for l in f]
    else:
        # recursively walk dataset directory to get images
        data = []
        dataset_dir = os.path.join(FLAGS.data_dir, FLAGS.dataset)
        for root, dirnames, filenames in os.walk(dataset_dir):
            for filename in fnmatch.filter(filenames, '*.{0}'.format(FLAGS.image_ext)):
                data.append(os.path.join(root, filename))
        shuffle(data)

        # save to file for next time
        with open(list_file, 'w') as f:
            for l in data:
                line = l.replace(dataset_dir + os.sep, '')
                f.write('{0}\n'.format(line))

    assert len(data) > 0, "found 0 training data"
    print "Found {0} training images.".format(len(data))

    # set up Adam optimizers
    d_optim = tf.train.AdamOptimizer(
        FLAGS.learning_rate,
        beta1=FLAGS.beta1
        ).minimize(dcgan.d_loss, var_list=dcgan.d_vars)
    g_optim = tf.train.AdamOptimizer(
        FLAGS.learning_rate,
        beta1=FLAGS.beta1
        ).minimize(dcgan.g_loss, var_list=dcgan.g_vars)
    tf.global_variables_initializer().run()

    # summaries
    g_sum = tf.summary.merge([dcgan.z_sum, dcgan.d_fake_sum,
        dcgan.g_sum, dcgan.d_loss_fake_sum, dcgan.g_loss_sum])
    d_sum = tf.summary.merge([dcgan.z_sum, dcgan.d_real_sum,
        dcgan.real_sum, dcgan.d_loss_real_sum, dcgan.d_loss_sum])
    writer = tf.summary.FileWriter(os.path.join(FLAGS.log_dir,
        dcgan.get_model_dir()), sess.graph)

    # training images for sampling
    sample_files = data[0:FLAGS.sample_size]
    sample = [get_image(sample_file,
                        FLAGS.output_size) for sample_file in sample_files]
    sample_images = np.array(sample).astype(np.float32)
    sample_path = os.path.join('./', FLAGS.sample_dir,
                               dcgan.get_model_dir(),
                               'real_samples.png')
    save_images(sample_images, sample_path)

    # z for sampling
    sample_z = generate_z(FLAGS.sample_size, FLAGS.z_dim)

    # run for number of epochs
    counter = 1
    start_time = time.time()
    for epoch in xrange(FLAGS.epoch):
        num_batches = int(len(data) / FLAGS.batch_size)
        # training iterations
        for batch_index in xrange(0, num_batches):
            # get batch of images for training
            batch_start = batch_index*FLAGS.batch_size
            batch_end = (batch_index+1)*FLAGS.batch_size
            batch_files = data[batch_start:batch_end]
            batch_images = [get_image(batch_file,
                               FLAGS.output_size) for batch_file in batch_files]

            # create batch of random z vectors for training
            batch_z = generate_z(FLAGS.batch_size, FLAGS.z_dim)

            # update D network
            _, summary_str = sess.run([d_optim, d_sum],
                feed_dict={dcgan.real_images: batch_images, dcgan.z: batch_z})
            writer.add_summary(summary_str, counter)

            # update G network
            _, summary_str = sess.run([g_optim, g_sum],
                feed_dict={dcgan.z: batch_z})
            writer.add_summary(summary_str, counter)

            # update G network again for stability
            _, summary_str = sess.run([g_optim, g_sum],
                feed_dict={dcgan.z: batch_z})
            writer.add_summary(summary_str, counter)

            # compute errors
            errD_fake = dcgan.d_loss_fake.eval({dcgan.z: batch_z})
            errD_real = dcgan.d_loss_real.eval({dcgan.real_images: batch_images})
            errG = dcgan.g_loss.eval({dcgan.z: batch_z})

            # increment global counter (for saving models)
            counter += 1

            # print stats
            print "[train] epoch: {0}, iter: {1}/{2}, time: {3}, d_loss: {4}, g_loss: {5}".format(
                epoch, batch_index, num_batches, time.time() - start_time, errD_fake+errD_real, errG)

            # sample every 100 iterations
            if np.mod(counter, 100) == 1:
                samples, d_loss, g_loss = dcgan.sess.run(
                    [dcgan.G, dcgan.d_loss, dcgan.g_loss],
                    feed_dict={dcgan.z: sample_z,
                               dcgan.real_images: sample_images})
                print "[sample] time: {0}, d_loss: {1}, g_loss: {2}".format(
                    time.time() - start_time, d_loss, g_loss)
                # save samples for visualization
                sample_path = os.path.join('./', FLAGS.sample_dir,
                                           dcgan.get_model_dir(),
                                           'train_{0:02d}_{1:04d}.png'.format(epoch, batch_index))
                save_images(samples, sample_path)

            # save model every 500 iterations
            if np.mod(counter, 500) == 2:
                dcgan.save(counter)
                print "[checkpoint] saved: {0}".format(time.time() - start_time)

    # save final model
    dcgan.save(counter)
    print "[checkpoint] saved: {0}".format(time.time() - start_time)