コード例 #1
0
ファイル: reader.py プロジェクト: lpywlr/Car-Infer
def preprocess(img, bbox_labels, mode, settings):
    img_width, img_height = img.size
    sampled_labels = bbox_labels
    if mode == 'train':
        if settings._apply_distort:
            img = image_util.distort_image(img, settings)
        if settings._apply_expand:
            img, bbox_labels, img_width, img_height = image_util.expand_image(
                img, bbox_labels, img_width, img_height, settings)
        # sampling
        batch_sampler = []
        # hard-code here
        batch_sampler.append(
            image_util.sampler(1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 0.0))
        batch_sampler.append(
            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0))
        sampled_bbox = image_util.generate_batch_samples(
            batch_sampler, bbox_labels)

        img = np.array(img)
        if len(sampled_bbox) > 0:
            idx = int(np.random.uniform(0, len(sampled_bbox)))
            img, sampled_labels = image_util.crop_image(
                img, bbox_labels, sampled_bbox[idx], img_width, img_height)

        img = Image.fromarray(img)
    img = img.resize((settings.resize_w, settings.resize_h), Image.ANTIALIAS)
    img = np.array(img)

    if mode == 'train':
        mirror = int(np.random.uniform(0, 2))
        if mirror == 1:
            img = img[:, ::-1, :]
            for i in six.moves.xrange(len(sampled_labels)):
                tmp = sampled_labels[i][1]
                sampled_labels[i][1] = 1 - sampled_labels[i][3]
                sampled_labels[i][3] = 1 - tmp
    # HWC to CHW
    if len(img.shape) == 3:
        img = np.swapaxes(img, 1, 2)
        img = np.swapaxes(img, 1, 0)
    # RBG to BGR
    img = img[[2, 1, 0], :, :]
    img = img.astype('float32')
    img -= settings.img_mean
    img = img * 0.007843
    return img, sampled_labels
コード例 #2
0
ファイル: reader.py プロジェクト: zhong110020/models
def preprocess(img, bbox_labels, mode, settings, image_path):
    img_width, img_height = img.size
    sampled_labels = bbox_labels
    if mode == 'train':
        if settings.apply_distort:
            img = image_util.distort_image(img, settings)
        if settings.apply_expand:
            img, bbox_labels, img_width, img_height = image_util.expand_image(
                img, bbox_labels, img_width, img_height, settings)

        # sampling
        batch_sampler = []
        # used for continuous evaluation
        if 'ce_mode' in os.environ:
            random.seed(0)
            np.random.seed(0)
        prob = np.random.uniform(0., 1.)
        if prob > settings.data_anchor_sampling_prob:
            scale_array = np.array([16, 32, 64, 128, 256, 512])
            batch_sampler.append(
                image_util.sampler(1, 10, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.2,
                                   0.0, True))
            sampled_bbox = image_util.generate_batch_random_samples(
                batch_sampler, bbox_labels, img_width, img_height, scale_array,
                settings.resize_width, settings.resize_height)
            img = np.array(img)
            if len(sampled_bbox) > 0:
                idx = int(np.random.uniform(0, len(sampled_bbox)))
                img, sampled_labels = image_util.crop_image_sampling(
                    img, bbox_labels, sampled_bbox[idx], img_width, img_height,
                    settings.resize_width, settings.resize_height,
                    settings.min_face_size)

            img = img.astype('uint8')
            img = Image.fromarray(img)

        else:
            # hard-code here
            batch_sampler.append(
                image_util.sampler(1, 50, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0,
                                   0.0, True))
            batch_sampler.append(
                image_util.sampler(1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0,
                                   0.0, True))
            batch_sampler.append(
                image_util.sampler(1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0,
                                   0.0, True))
            batch_sampler.append(
                image_util.sampler(1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0,
                                   0.0, True))
            batch_sampler.append(
                image_util.sampler(1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0,
                                   0.0, True))
            sampled_bbox = image_util.generate_batch_samples(
                batch_sampler, bbox_labels, img_width, img_height)

            img = np.array(img)
            if len(sampled_bbox) > 0:
                idx = int(np.random.uniform(0, len(sampled_bbox)))
                img, sampled_labels = image_util.crop_image(
                    img, bbox_labels, sampled_bbox[idx], img_width, img_height,
                    settings.resize_width, settings.resize_height,
                    settings.min_face_size)

            img = Image.fromarray(img)
    interp_mode = [
        Image.BILINEAR, Image.HAMMING, Image.NEAREST, Image.BICUBIC,
        Image.LANCZOS
    ]
    interp_indx = np.random.randint(0, 5)

    img = img.resize((settings.resize_width, settings.resize_height),
                     resample=interp_mode[interp_indx])
    img = np.array(img)

    if mode == 'train':
        mirror = int(np.random.uniform(0, 2))
        if mirror == 1:
            img = img[:, ::-1, :]
            for i in six.moves.xrange(len(sampled_labels)):
                tmp = sampled_labels[i][1]
                sampled_labels[i][1] = 1 - sampled_labels[i][3]
                sampled_labels[i][3] = 1 - tmp

    img = to_chw_bgr(img)
    img = img.astype('float32')
    img -= settings.img_mean
    img = img * settings.scale
    return img, sampled_labels