def imread(path, is_grayscale = False): if '.npy' in path: return np.load(path) elif (is_grayscale): return _imread(path, flatten=True).astype(np.float) else: return _imread(path, mode='RGB').astype(np.float)
def imread(filename, *, normalize=False, flatten=False): '''\ imread(filename, flatten=False) Loads an image as a numerical matrix of either 2 or 3 dimensions. Parameters ---------- filename: string The path of the image to load normalize: boolean, optional If set to true, the return value will be an array with float values between 0 and 1. If set to false, the reurn value will be an array with uint8 values between 0 and 255. default value is False. flatten: boolean, optional If set to true, the return value is a 2 dimensional ndarray with the grayscale representation of the loaded image. Returns ------- image: ndarray matrix representation of the loaded image, either 2 or 3 dimensional depending on the file and the `flatten` parameter. Examples -------- (TODO) ''' img = _imread(filename) if flatten: img = img @ [0.299, 0.587, 0.114] if normalize: return (img / 255) return img.astype(_np.uint8)
def imread(filename, *, normalize=False, flatten=False): img = _imread(filename) if flatten: img = img @ [0.299, 0.587, 0.114] if normalize: return (img / 255) return img.astype(_np.uint8)
def imread(filename, flatten=0): """Read an image file into a numpy array using imageio.imread Parameters ---------- filename : string the absolute path of the image file flatten : bool True if the image is RGB color or False (default) if greyscale Returns ------- frame : np.ndarray a numpy array with grey levels Examples -------- >>> image = openpiv.tools.imread( 'image.bmp' ) >>> print image.shape (1280, 1024) """ im = _imread(filename) if np.ndim(im) > 2: im = rgb2gray(im) return im
def imread(path, is_grayscale = False): if (is_grayscale): return _imread(path, flatten=True).astype(np.float) else: image = cv2.imread(path, cv2.IMREAD_UNCHANGED) image[..., :3] = cv2.cvtColor(image[..., :3], cv2.COLOR_BGR2RGB) if image.shape[2] == 4: image_fill = np.ones((image.shape[0], image.shape[1], 3)) * 255 image_new = image[..., :3] * image[..., 3:] + image_fill * (1 - image[..., 3:]) cv2.imwrite('img.png', cv2.cvtColor(image_new.astype(np.uint8), cv2.COLOR_RGB2BGR)) return image_new #_imread(path, mode='RGB').astype(np.float) return image.astype(np.float32)
def find_bg(list_file=None, list_img=None): """finds the background for image list or file list, similar to mark_background2 function but with minor differences in handling the images and image intensities""" if list_img == None: list_img = [] for I in range(len(list_file)): list_img.append(_imread(list_file[I])) background = np.zeros(list_img[0].shape, dtype=np.int32) for I in range(background.shape[0]): for J in range(background.shape[1]): min_1 = list_img[0][I,J] for K in range(len(list_img)): if min_1 > list_img[K][I,J]: min_1 = list_img[K][I,J] background[I,J]=min_1 return background
def imread(path, is_grayscale=True): if (is_grayscale): return _imread(path, flatten=True).astype(np.float) else: return _imread(path, mode='RGB').astype(np.float)
def imread(path, is_grayscale=False): return _imread(path).astype(np.float)
def __init__(self, specs): super().__init__() self.path = specs mask = _imread(specs).astype(bool) self.ypos, self.xpos = _np.where(mask)
def imread(path, is_grayscale = False): if (is_grayscale): return _imread(path, flatten=True).astype(np.float) else: return _imread(path, pilmode="RGB").astype(np.float)
def imread(path, is_grayscale = False): if (is_grayscale): return _imread(path, flatten=True).astype(np.float) else: return _imread(path, mode='RGB').astype(np.float)
def imread(path, is_grayscale=False): if is_grayscale: return _imread(path, as_gray=True).astype(np.float) else: return _imread(path, mode='RGB').astype(np.float)