コード例 #1
0
def get_data(name, batch):
    isTrain = name == 'train'

    if isTrain:
        augmentors = [
            GoogleNetResize(crop_area_fraction=0.49),
            imgaug.RandomOrderAug([
                imgaug.BrightnessScale((0.6, 1.4), clip=False),
                imgaug.Contrast((0.6, 1.4), clip=False),
                imgaug.Saturation(0.4, rgb=False),
                # rgb-bgr conversion for the constants copied from fb.resnet.torch
                imgaug.Lighting(
                    0.1,
                    eigval=np.asarray([0.2175, 0.0188, 0.0045][::-1]) * 255.0,
                    eigvec=np.array([[-0.5675, 0.7192, 0.4009],
                                     [-0.5808, -0.0045, -0.8140],
                                     [-0.5836, -0.6948, 0.4203]],
                                    dtype='float32')[::-1, ::-1])
            ]),
            imgaug.Flip(horiz=True),
        ]
    else:
        augmentors = [
            imgaug.ResizeShortestEdge(256, cv2.INTER_CUBIC),
            imgaug.CenterCrop((224, 224)),
        ]
    return get_imagenet_dataflow(args.data, name, batch, augmentors)
コード例 #2
0
def get_data(name, batch):
    isTrain = name == 'train'
    image_shape = 224

    if isTrain:
        augmentors = [
            # use lighter augs if model is too small
            GoogleNetResize(
                crop_area_fraction=0.49 if args.width_ratio < 1 else 0.08,
                target_shape=image_shape),
            imgaug.RandomOrderAug([
                imgaug.BrightnessScale((0.6, 1.4), clip=False),
                imgaug.Contrast((0.6, 1.4), clip=False),
                imgaug.Saturation(0.4, rgb=False),
            ]),
            imgaug.Flip(horiz=True),
        ]
    else:
        augmentors = [
            imgaug.ResizeShortestEdge(int(image_shape * 256 / 224),
                                      cv2.INTER_CUBIC),
            imgaug.CenterCrop((image_shape, image_shape)),
        ]
    return get_imagenet_dataflow(args.data_dir,
                                 name,
                                 batch,
                                 augmentors,
                                 meta_dir=args.meta_dir)