コード例 #1
0
 def test_mpi_eye(self):
     size = 128
     part_eye = mpi_eye(size)
     test_eye = np.eye(size, dtype=np.float64)
     full_eye = np.vstack(comm.allgather(part_eye))
     for i in range(full_eye.shape[0]):
         self.assertListEqual(list(test_eye[i]), list(full_eye[i]))
コード例 #2
0
ファイル: parallel_ops.py プロジェクト: luizfelippesr/imagine
def peye(size):
    """
    :py:func:`imagine.tools.mpi_helper.mpi_eye` or :py:func:`numpy.eye`
    depending on :py:data:`imagine.rc['distributed_arrays']`.
    """
    if rc['distributed_arrays']:
        return m.mpi_eye(size)
    else:
        return np.eye(size)
コード例 #3
0
def oas_mcov(data):
    """
    Estimate covariance with the Oracle Approximating Shrinkage algorithm.

    See `imagine.tools.covariance_estimator.oas_cov` for details. This
    function aditionally returns the computed ensemble mean.

    Parameters
    ----------
    data : numpy.ndarray
        distributed data in global shape (ensemble_size, data_size)

    Returns
    -------
    mean : numpy.ndarray
        copied ensemble mean (on all nodes)
    cov : numpy.ndarray
        distributed covariance matrix in shape (data_size, data_size)
    """
    log.debug('@ covariance_estimator::oas_mcov')
    assert isinstance(data, np.ndarray)
    assert (len(data.shape) == 2)

    # Finds ensemble size and data size
    data_size = data.shape[1]
    ensemble_size = np.array(0, dtype=np.uint)
    comm.Allreduce([np.array(data.shape[0], dtype=np.uint), MPI.LONG],
                   [ensemble_size, MPI.LONG],
                   op=MPI.SUM)

    # Calculates OAS covariance extimator from empirical covariance estimator
    mean = mpi_mean(data)
    u = data - mean
    s = mpi_mult(mpi_trans(u), u) / ensemble_size
    trs = mpi_trace(s)
    trs2 = mpi_trace(mpi_mult(s, s))

    numerator = (1.0 - 2.0 / data_size) * trs2 + trs * trs
    denominator = (ensemble_size + 1.0 -
                   2.0 / data_size) * (trs2 - (trs * trs) / data_size)

    if denominator == 0:
        rho = 1
    else:
        rho = np.min([1, numerator / denominator])
    cov = (1. - rho) * s + mpi_eye(data_size) * rho * trs / data_size

    return mean, cov
コード例 #4
0
def testfield(measure_size, simulation_size, make_plots=True, debug=False):
    if debug:
        log.basicConfig(filename='imagine_li_dynesty.log', level=log.DEBUG)
    else:
        log.basicConfig(filename='imagine_li_dynesty.log')
    """

    :return:

    log.basicConfig(filename='imagine.log', level=log.INFO)
    """
    """
    # step 0, set 'a' and 'b', 'mea_std'

    TestField in LiSimulator is modeled as
        field = gaussian_random(mean=a,std=b)_x * cos(x)
        where x in (0,2pi)

    for generating mock data we need
    true values of a and b: true_a, true_b, mea_seed
    measurement uncertainty: mea_std
    measurement points, positioned in (0,2pi) evenly, due to TestField modelling
    """
    true_a = 3.
    true_b = 6.
    mea_std = 0.1  # std of gaussian measurement error
    mea_seed = 233
    truths = [true_a, true_b]  # will be used in visualizing posterior
    """
    # step 1, prepare mock data
    """
    """
    # 1.1, generate measurements
    mea_field = signal_field + noise_field
    """
    x = np.linspace(0, 2. * np.pi, measure_size)  # data points in measurements
    np.random.seed(mea_seed)  # seed for signal field
    signal_field = np.multiply(
        np.cos(x), np.random.normal(loc=true_a,
                                    scale=true_b,
                                    size=measure_size))
    mea_field = np.vstack([
        signal_field +
        np.random.normal(loc=0., scale=mea_std, size=measure_size)
    ])
    """
    # 1.2, generate covariances
    what's the difference between pre-define dan re-estimated?
    """
    # re-estimate according to measurement error
    mea_repeat = np.zeros((simulation_size, measure_size))
    for i in range(simulation_size):  # times of repeated measurements
        mea_repeat[i, :] = signal_field + np.random.normal(
            loc=0., scale=mea_std, size=measure_size)
    mea_cov = oas_mcov(mea_repeat)[1]

    print(mpirank, 're-estimated: \n', mea_cov, 'slogdet',
          mpi_slogdet(mea_cov))

    # pre-defined according to measurement error
    mea_cov = (mea_std**2) * mpi_eye(measure_size)

    print(mpirank, 'pre-defined: \n', mea_cov, 'slogdet', mpi_slogdet(mea_cov))
    """
    # 1.3 assemble in imagine convention
    """

    mock_data = Measurements()  # create empty Measrurements object
    mock_cov = Covariances()  # create empty Covariance object
    # pick up a measurement
    mock_data.append(('test', 'nan', str(measure_size), 'nan'), mea_field,
                     True)
    mock_cov.append(('test', 'nan', str(measure_size), 'nan'), mea_cov, True)
    """
    # 1.4, visualize mock data
    """
    if mpirank == 0 and make_plots:
        plt.plot(x,
                 mock_data[('test', 'nan', str(measure_size), 'nan')].data[0])
        plt.savefig('testfield_mock_li.pdf')
    """
    # step 2, prepare pipeline and execute analysis
    """
    """
    # 2.1, ensemble likelihood
    """
    likelihood = EnsembleLikelihood(
        mock_data, mock_cov)  # initialize likelihood with measured info
    """
    # 2.2, field factory list
    """
    factory = TestFieldFactory(
        active_parameters=('a', 'b'))  # factory with single active parameter
    factory.parameter_ranges = {
        'a': (0, 10),
        'b': (0, 10)
    }  # adjust parameter range for Bayesian analysis
    factory_list = [factory]  # likelihood requires a list/tuple of factories
    """
    # 2.3, flat prior
    """
    prior = FlatPrior()
    """
    # 2.4, simulator
    """
    simer = LiSimulator(mock_data)
    """
    # 2.5, pipeline
    """
    pipe = DynestyPipeline(simer, factory_list, likelihood, prior,
                           simulation_size)
    pipe.random_type = 'controllable'  # 'fixed' random_type doesnt work for Dynesty pipeline, yet
    pipe.seed_tracer = int(23)
    pipe.sampling_controllers = {'nlive': 400}

    tmr = Timer()
    tmr.tick('test')
    results = pipe()
    tmr.tock('test')
    if mpirank == 0:
        print('\n elapse time ' + str(tmr.record['test']) + '\n')
    """
    # step 3, visualize (with corner package)
    """
    if mpirank == 0 and make_plots:
        samples = results['samples']
        for i in range(len(
                pipe.active_parameters)):  # convert variables into parameters
            low, high = pipe.active_ranges[pipe.active_parameters[i]]
            for j in range(samples.shape[0]):
                samples[j, i] = unity_mapper(samples[j, i], low, high)
        # corner plot
        corner.corner(samples[:, :len(pipe.active_parameters)],
                      range=[0.99] * len(pipe.active_parameters),
                      quantiles=[0.02, 0.5, 0.98],
                      labels=pipe.active_parameters,
                      show_titles=True,
                      title_kwargs={"fontsize": 15},
                      color='steelblue',
                      truths=truths,
                      truth_color='firebrick',
                      plot_contours=True,
                      hist_kwargs={'linewidth': 2},
                      label_kwargs={'fontsize': 20})
        plt.savefig('testfield_posterior_li_dynesty.pdf')
コード例 #5
0
def mock_errfix(_nside, _freq):
    """
    return masked mock synchrotron Q, U
    error fixed
    """
    # hammurabi parameter base file
    xmlpath = './params.xml'
    # active parameters
    true_b0 = 3.0
    true_psi0 = 27.0
    true_psi1 = 0.9
    true_chi0 = 25.
    true_alpha = 3.0
    true_r0 = 5.0
    true_z0 = 1.0
    true_rms = 6.0
    true_rho = 0.8
    true_a0 = 1.7
    #
    _npix = 12*_nside**2
    #
    x = np.zeros((1, _npix))  # only for triggering simulator
    trigger = Measurements()
    trigger.append(('sync', str(_freq), str(_nside), 'Q'), x)  # Q map
    trigger.append(('sync', str(_freq), str(_nside), 'U'), x)  # U map
    # initialize simulator
    error = 0.1
    mocker = Hammurabi(measurements=trigger, xml_path=xmlpath)
    # start simulation
    # BregLSA field
    paramlist = {'b0': true_b0, 'psi0': true_psi0, 'psi1': true_psi1, 'chi0': true_chi0}
    breg_lsa = BregLSA(paramlist, 1)
    # CREAna field
    paramlist = {'alpha': true_alpha, 'beta': 0.0, 'theta': 0.0,
                 'r0': true_r0, 'z0': true_z0,
                 'E0': 20.6, 'j0': 0.0217}
    cre_ana = CREAna(paramlist, 1)
    # TEregYMW16 field
    paramlist = dict()
    fereg_ymw16 = TEregYMW16(paramlist, 1)
    # BrndES field
    paramlist = {'rms': true_rms, 'k0': 0.1, 'k1': 0.1, 'a1': 0.0, 'a0': true_a0, 'rho': true_rho,
                 'r0': 8.0, 'z0': 1.0}
    brnd_es = BrndES(paramlist, 1)
    # collect mock data and covariance
    outputs = mocker([breg_lsa, cre_ana, fereg_ymw16, brnd_es])
    mock_raw_q = outputs[('sync', str(_freq), str(_nside), 'Q')].data
    mock_raw_u = outputs[('sync', str(_freq), str(_nside), 'U')].data
    # collect mean and cov from simulated results
    mock_data = Measurements()
    mock_cov = Covariances()
    mock_mask = Masks()
    
    mock_data.append(('sync', str(_freq), str(_nside), 'Q'), mock_raw_q)
    mock_data.append(('sync', str(_freq), str(_nside), 'U'), mock_raw_u)
    
    mask_map = mask_map_prod(_nside, 0, 90, 50)  # not parameterizing this
    mock_mask.append(('sync', str(_freq), str(_nside), 'Q'), np.vstack([mask_map]))
    mock_mask.append(('sync', str(_freq), str(_nside), 'U'), np.vstack([mask_map]))
    mock_data.apply_mask(mock_mask)
    for key in mock_data.keys():
        mock_cov.append(key, (error**2*(np.std(mock_raw_q))**2)*mpi_eye(int(key[2])), True)
    return mock_data, mock_cov
コード例 #6
0
def lsa_errfix():
    #log.basicConfig(filename='imagine.log', level=log.DEBUG)
    """
    only LSA regular magnetic field model in test, @ 23GHz
    Faraday rotation provided by YMW16 thermal electron model
    full LSA parameter set {b0, psi0, psi1, chi0}
    """
    # hammurabi parameter base file
    xmlpath = './params.xml'

    # we take three active parameters
    true_b0 = 6.0
    true_psi0 = 27.0
    true_psi1 = 0.9
    true_chi0 = 25.
    true_alpha = 3.0
    true_r0 = 5.0
    true_z0 = 1.0

    mea_nside = 2  # observable Nside
    mea_pix = 12 * mea_nside**2  # observable pixel number
    """
    # step 1, prepare mock data
    """
    x = np.zeros((1, mea_pix))  # only for triggering simulator
    trigger = Measurements()
    trigger.append(('sync', '23', str(mea_nside), 'I'), x)  # only I map
    # initialize simulator
    error = 0.1  # theoretical raltive uncertainty for each (active) parameter
    mocker = Hammurabi(measurements=trigger, xml_path=xmlpath)
    # start simulation
    # BregLSA field
    paramlist = {
        'b0': true_b0,
        'psi0': true_psi0,
        'psi1': true_psi1,
        'chi0': true_chi0
    }  # inactive parameters at default
    breg_lsa = BregLSA(paramlist, 1)
    # CREAna field
    paramlist = {
        'alpha': true_alpha,
        'beta': 0.0,
        'theta': 0.0,
        'r0': true_r0,
        'z0': true_z0,
        'E0': 20.6,
        'j0': 0.0217
    }  # inactive parameters at default
    cre_ana = CREAna(paramlist, 1)
    # TEregYMW16 field
    tereg_ymw16 = TEregYMW16(dict(), 1)
    # collect mock data and covariance
    outputs = mocker([breg_lsa, cre_ana, tereg_ymw16])
    Imap = outputs[('sync', '23', str(mea_nside), 'I')].local_data
    # collect mean and cov from simulated results
    mock_data = Measurements()
    mock_cov = Covariances()
    mock_data.append(('sync', '23', str(mea_nside), 'I'), Imap)
    mock_cov.append(('sync', '23', str(mea_nside), 'I'),
                    (error**2 * (mpi_mean(Imap))**2) * mpi_eye(mea_pix))
    """
    # step 2, prepare pipeline and execute analysis
    """
    likelihood = EnsembleLikelihood(mock_data, mock_cov)

    breg_factory = BregLSAFactory(active_parameters=('b0', 'psi0', 'psi1',
                                                     'chi0'))
    breg_factory.parameter_ranges = {
        'b0': (0., 10.),
        'psi0': (0., 50.),
        'psi1': (0., 2.),
        'chi0': (0., 50.)
    }
    cre_factory = CREAnaFactory(active_parameters=('alpha', 'r0', 'z0'))
    cre_factory.parameter_ranges = {
        'alpha': (1., 5.),
        'r0': (1., 10.),
        'z0': (0.1, 5.)
    }
    tereg_factory = TEregYMW16Factory()
    factory_list = [breg_factory, cre_factory, tereg_factory]

    prior = FlatPrior()

    simer = Hammurabi(measurements=mock_data, xml_path=xmlpath)

    ensemble_size = 10
    pipe = DynestyPipeline(simer, factory_list, likelihood, prior,
                           ensemble_size)
    pipe.random_type = 'free'
    pipe.sampling_controllers = {'nlive': 4000}
    results = pipe()
    """
    # step 3, visualize (with corner package)
    """
    if mpirank == 0:
        samples = results['samples']
        np.savetxt('posterior_fullsky_regular_errfix.txt', samples)
    """