コード例 #1
0
ファイル: cgi_exe.py プロジェクト: xiaofengShi/Gans
    def colorize_flask(self, id_str, step='C', blur=0, s_size=128, colorize_format="jpg"):
        if self.gpu >= 0:
            cuda.get_device(self.gpu).use()

        _ = {'S': "ref/", 'L': "out_min/", 'C': "ref/"}
        dataset = ImageAndRefDataset(
            [id_str + ".png"], self.root + "line/", self.root + _[step])

        _ = {'S': True, 'L': False, 'C': True}
        sample = dataset.get_example(0, minimize=_[step], blur=blur, s_size=s_size)

        _ = {'S': 0, 'L': 1, 'C': 0}[step]
        # shape is 1,4,height,width
        sample_container = np.zeros(
            (1, 4, sample[_].shape[1], sample[_].shape[2]), dtype='f')
        sample_container[0, :] = sample[_]

        if self.gpu >= 0:
            sample_container = cuda.to_gpu(sample_container)

        cnn = {'S': self.cnn_128, 'L': self.cnn_512, 'C': self.cnn_128}
        with chainer.no_backprop_mode():
            with chainer.using_config('train', False):
                image_conv2d_layer = cnn[step].calc(Variable(sample_container))
        del sample_container

        """ convert 128 to 512 """

        if step == 'C':
            input_bat = np.zeros((1, 4, sample[1].shape[1], sample[1].shape[2]), dtype='f')
            input_bat[0, 0, :] = sample[1]

            output = cuda.to_cpu(image_conv2d_layer.data[0])
            del image_conv2d_layer  # release memory

            for channel in range(3):
                input_bat[0, 1 + channel, :] = cv2.resize(
                    output[channel, :],
                    (sample[1].shape[2], sample[1].shape[1]),
                    interpolation=cv2.INTER_CUBIC)

            if self.gpu >= 0:
                link = cuda.to_gpu(input_bat, None)
            else:
                link = input_bat
            with chainer.no_backprop_mode():
                with chainer.using_config('train', False):
                    image_conv2d_layer = self.cnn_512.calc(Variable(link))
            del link  # release memory

        image_out_path = {
            'S': self.outdir_min + id_str + ".png",
            'L': self.outdir + id_str + ".jpg",
            'C': self.outdir + id_str + "_0." + colorize_format}
        self.save_as_img(image_conv2d_layer.data[0], image_out_path[step])
        del image_conv2d_layer
コード例 #2
0
ファイル: cgi_exe.py プロジェクト: tackman/PaintsChainer
    def colorize(self, id_str, blur=0, s_size=128):
        cuda.get_device(self.gpu).use()

        dataset = ImageAndRefDataset([id_str + ".png"], self.root + "line/",
                                     self.root + "ref/")
        test_in_s, test_in = dataset.get_example(0, minimize=True)
        # 1st fixed to 128*128
        x = np.zeros(
            (1, 4, test_in_s.shape[1], test_in_s.shape[2])).astype('f')
        input_bat = np.zeros(
            (1, 4, test_in.shape[1], test_in.shape[2])).astype('f')
        print(input_bat.shape)

        line, line2 = dataset.get_example(0, minimize=True)
        x[0, :] = line
        input_bat[0, 0, :] = line2

        x = cuda.to_gpu(x)
        y = self.cnn_128.calc(Variable(x), test=True)

        output = y.data.get()

        self.save_as_img(output[0],
                         self.outdir_min + id_str + "_" + str(0) + ".png")

        for ch in range(3):
            input_bat[0, 1 + ch, :] = cv2.resize(
                output[0, ch, :], (test_in.shape[2], test_in.shape[1]),
                interpolation=cv2.INTER_CUBIC)

        x = cuda.to_gpu(input_bat)
        y = self.cnn.calc(Variable(x), test=True)

        output = y.data.get()

        self.save_as_img(output[0],
                         self.outdir + id_str + "_" + str(0) + ".jpg")
コード例 #3
0
ファイル: cgi_exe.py プロジェクト: tackman/PaintsChainer
    def colorize_l(self, id_str):
        cuda.get_device(self.gpu).use()

        dataset = ImageAndRefDataset([id_str + ".png"], self.root + "line/",
                                     self.root + "out_min/")
        test_in, test_in_ = dataset.get_example(0, minimize=False)
        x = np.zeros((1, 4, test_in.shape[1], test_in.shape[2])).astype('f')
        x[0, :] = test_in

        x = cuda.to_gpu(x)
        y = self.cnn.calc(Variable(x), test=True)

        output = y.data.get()

        self.save_as_img(output[0], self.outdir + id_str + ".jpg")
コード例 #4
0
    def colorize_l(self, id_str):
        if self.gpu >= 0:
            cuda.get_device(self.gpu).use()

        dataset = ImageAndRefDataset([id_str + ".png"], self.root + "line/",
                                     self.root + "out_min/")
        test_in, test_in_ = dataset.get_example(0, minimize=False)
        x = np.zeros((1, 4, test_in.shape[1], test_in.shape[2]), dtype='f')
        x[0, :] = test_in

        if self.gpu >= 0:
            x = cuda.to_gpu(x)
        y = self.cnn.calc(Variable(x, volatile='on'), test=True)

        self.save_as_img(y.data[0], self.outdir + id_str + ".jpg")
コード例 #5
0
ファイル: cgi_exe.py プロジェクト: tackman/PaintsChainer
    def colorize_s(self, id_str, blur=0, s_size=128):
        cuda.get_device(self.gpu).use()

        dataset = ImageAndRefDataset([id_str + ".png"], self.root + "line/",
                                     self.root + "ref/")
        test_in_s, test_in = dataset.get_example(0,
                                                 minimize=True,
                                                 blur=blur,
                                                 s_size=s_size)
        x = np.zeros(
            (1, 4, test_in_s.shape[1], test_in_s.shape[2])).astype('f')

        x[0, :] = test_in_s

        x = cuda.to_gpu(x)
        y = self.cnn_128.calc(Variable(x), test=True)
        output = y.data.get()

        self.save_as_img(output[0], self.outdir_min + id_str + ".png")
コード例 #6
0
    def colorize(self, id_str, blur=0, s_size=128):
        if self.gpu >= 0:
            cuda.get_device(self.gpu).use()

        dataset = ImageAndRefDataset([id_str + ".png"], self.root + "line/",
                                     self.root + "ref/")
        line, line2 = dataset.get_example(0, minimize=True)
        # 1st fixed to 128*128
        x = np.zeros((1, 4, line.shape[1], line.shape[2]), dtype='f')
        input_bat = np.zeros((1, 4, line2.shape[1], line2.shape[2]), dtype='f')
        print(input_bat.shape)

        x[0, :] = line
        input_bat[0, 0, :] = line2

        if self.gpu >= 0:
            x = cuda.to_gpu(x, cuda.Stream.null)
        y = self.cnn_128.calc(Variable(x, volatile='on'), test=True)
        del x  # release memory

        output = cuda.to_cpu(y.data[0])
        del y  # release memory

        # self.save_as_img(output, self.outdir_min + id_str + "_0.png")

        for ch in range(3):
            input_bat[0,
                      1 + ch, :] = cv2.resize(output[ch, :],
                                              (line2.shape[2], line2.shape[1]),
                                              interpolation=cv2.INTER_CUBIC)

        if self.gpu >= 0:
            x = cuda.to_gpu(input_bat, cuda.Stream.null)
        else:
            x = input_bat
        y = self.cnn.calc(Variable(x, volatile='on'), test=True)
        del x  # release memory

        self.save_as_img(y.data[0], self.outdir + id_str + "_0.jpg")
コード例 #7
0
    def colorize(self, id_str, step='C', blur=0, s_size=128,colorize_format="jpg"):
        if self.gpu >= 0:
            cuda.get_device(self.gpu).use()

        _ = {'S': "ref/", 'L': "out_min/", 'C': "ref/"}
        dataset = ImageAndRefDataset(
            [id_str + ".png"], self.root + "line/", self.root + _[step])

        _ = {'S': True, 'L': False, 'C': True}
        sample = dataset.get_example(0, minimize=_[step], blur=blur, s_size=s_size)

        _ = {'S': 0, 'L': 1, 'C': 0}[step]
        sample_container = np.zeros(
            (1, 4, sample[_].shape[1], sample[_].shape[2]), dtype='f')
        sample_container[0, :] = sample[_]

        if self.gpu >= 0:
            sample_container = cuda.to_gpu(sample_container)

        cnn = {'S': self.cnn_128, 'L': self.cnn_512, 'C': self.cnn_128}
        image_conv2d_layer = cnn[step].calc(Variable(sample_container, volatile='on'), test=True)
        del sample_container

        if step == 'C':
            input_bat = np.zeros((1, 4, sample[1].shape[1], sample[1].shape[2]), dtype='f')
            print(input_bat.shape)
            input_bat[0, 0, :] = sample[1]

            output = cuda.to_cpu(image_conv2d_layer.data[0])
            del image_conv2d_layer  # release memory

            for channel in range(3):
                input_bat[0, 1 + channel, :] = cv2.resize(
                    output[channel, :], 
                    (sample[1].shape[2], sample[1].shape[1]), 
                    interpolation=cv2.INTER_CUBIC)

            if self.gpu >= 0:
                link = cuda.to_gpu(input_bat, None)
            else:
                link = input_bat
            image_conv2d_layer = self.cnn_512.calc(Variable(link, volatile='on'), test=True)
            del link  # release memory

        image_out_path = {
            'S': self.outdir_min + id_str + ".png", 
            'L': self.outdir + id_str + ".jpg", 
            'C': self.outdir + id_str + "_0." + colorize_format}
        self.save_as_img(image_conv2d_layer.data[0], image_out_path[step])
        del image_conv2d_layer



        ### custom
        #img_out = Image.open(self.outdir + id_str +"_"+ str(0) + ".jpg")
        img_out = cv2.imread(self.outdir + id_str +"_"+ str(0) + ".jpg")

        # line image is original resolution
        img_line = Image.open(self.root+"line/" + id_str + ".png");
        img_line = img_line.convert("RGB")

        img_out = cv2.resize(img_out, img_line.size, interpolation = cv2.INTER_CUBIC)
        #img_out.save(self.root+"tmp_out.png")
        cv2.imwrite(self.root+"tmp_out.png", img_out)
        #img_out.save(self.root+ "out/"+id_str + "tmp_out.png")
        cv2.imwrite(self.root+ "out/"+id_str + "tmp_out.png", img_out)

        del img_out

        # median out mult
        img_tmp_out = cv2.imread(self.root+ "out/"+id_str + "tmp_out.png")
        img_med = cv2.medianBlur(img_tmp_out, ksize=5)
        cv2.imwrite(self.root+"median_out.png", img_med)
        cv2.imwrite(self.root+ "out/"+id_str + "median_out.png", img_med)

        img_out = Image.open(self.root+ "out/"+id_str + "median_out.png")

        img_mult = ImageChops.multiply(img_out, img_line)
        img_mult.save(self.root+"med_mult.png")
        img_mult.save(self.root+ "out/"+id_str + "med_mult.png")

        # multiply
        #img_out = Image.open(self.root+"tmp_out.png")
        #img_mult = ImageChops.multiply(img_out, img_line)
        #img_mult.save(self.root+"mult.png")

        del img_mult

        # output only color
        img_line = ImageOps.invert(img_line)
        #img_line = img_line.resize(img_out.size)

        #img_sub = ImageChops.subtract(img_out, img_line)
        img_add = ImageChops.add(img_out, img_line)
        img_add.save(self.root+"color.png")
        img_add.save(self.root+ "out/"+id_str + "color.png")

        del img_out, img_line, img_add

        # median to color
        img_color = cv2.imread(self.root+ "out/"+id_str + "color.png")
        img_med = cv2.medianBlur(img_color, ksize=5)
        cv2.imwrite(self.root+"median_color.png", img_med)
        cv2.imwrite(self.root+ "out/"+id_str + "median_color.png", img_med)

        # median color mult
        #img_line = Image.open(self.root+"line/" + id_str + ".png");
        #img_line = img_line.convert("RGB")
        #img_out = Image.open(self.root+"median_color.png")
        #img_mult = ImageChops.multiply(img_out, img_line)
        #img_mult.save(self.root+"med_mult_color.png")

        # median color soft
        img_med = cv2.imread(self.root+ "out/"+id_str + "median_color.png")
        img_soft = cv2.GaussianBlur(img_med, (15,15), 1)
        cv2.imwrite(self.root+"median_color_soft.png", img_soft)
        cv2.imwrite(self.root+ "out/"+id_str + "median_color_soft.png", img_soft)
コード例 #8
0
ファイル: cgi_exe.py プロジェクト: ljwdust/recolor
    def colorize(self, id_str, step='C', blur=0, s_size=128, colorize_format="jpg"):
        if self.gpu >= 0:
            cuda.get_device(self.gpu).use()

        dataset = ImageAndRefDataset(
            [id_str + ".png"], self.root + "line/", self.root + "ref/", 
            colormode=self._colormode, normalized=self._norm)

        # s_size is the size of final result, could be modified
        sample = dataset.get_example(0, minimize=True, blur=blur, s_size=128)

        if self._colormode == 'YUV':
            sample_container = np.zeros(
                (1, 4, sample[0].shape[1], sample[0].shape[2]), dtype='f')
        elif self._colormode == 'LAB':
            sample_container = np.zeros(
                (1, 3, sample[0].shape[1], sample[0].shape[2]), dtype='f')
        sample_container[0, :] = sample[0]

        if self.gpu >= 0:
            sample_container = cuda.to_gpu(sample_container)

        image_conv2d_layer = self.cnn_128.calc(Variable(sample_container, volatile='on'), test=True)
        del sample_container

        # if step == 'C':
        #     input_bat = np.zeros((1, 4, sample[1].shape[1], sample[1].shape[2]), dtype='f')
        #     print(input_bat.shape)
        #     input_bat[0, 0, :] = sample[1]

        #     output = cuda.to_cpu(image_conv2d_layer.data[0])
        #     del image_conv2d_layer  # release memory

        #     for channel in range(3):
        #         input_bat[0, 1 + channel, :] = cv2.resize(
        #             output[channel, :], 
        #             (sample[1].shape[2], sample[1].shape[1]), 
        #             interpolation=cv2.INTER_CUBIC)

        #     if self.gpu >= 0:
        #         link = cuda.to_gpu(input_bat, None)
        #     else:
        #         link = input_bat
        #     image_conv2d_layer = self.cnn_512.calc(Variable(link, volatile='on'), test=True)
        #     del link  # release memory

        image_out_path = self.outdir + id_str + "_0." + colorize_format

        if self._colormode == 'YUV':
            convdata = image_conv2d_layer.data[0]
            self.save_as_img(convdata, image_out_path)
        elif self._colormode == 'LAB':
            if self._norm:
                convdata = image_conv2d_layer.data[0] + 128
            else:
                convdata = image_conv2d_layer.data[0]

            ab = convdata.transpose(1, 2, 0)
            ab = ab.clip(0, 255).astype(np.uint8)
            if self.gpu >= 0:
                ab = cuda.to_cpu(ab)

            L = sample[1].transpose(1, 2, 0)
            lab = np.zeros((L.shape[0], L.shape[1], 3), dtype='f')
            lab[:,:,0] = L[:,:,0]
            lab[:,:,1:] = cv2.resize(ab, (L.shape[1], L.shape[0]), interpolation=cv2.INTER_AREA)
            lab = lab.astype(np.uint8)

            res = cv2.cvtColor(lab, cv2.COLOR_LAB2RGB)
            cv2.imwrite(image_out_path, res)

        del image_conv2d_layer