コード例 #1
0
def save_brain(image, source_image_path, output_path):
    registration_config = source_custom_config_amap()
    atlas_scale, transformation_matrix = get_transform_space_params(
        registration_config, source_image_path)
    brainio.to_nii(
        image.astype(np.int16),
        str(output_path),
        scale=atlas_scale,
        affine_transform=transformation_matrix,
    )
コード例 #2
0
def config_parse(parser):
    config_opt_parser = parser.add_argument_group("Config options")
    config_opt_parser.add_argument(
        "--registration-config",
        dest="registration_config",
        type=str,
        default=source_files.source_custom_config_amap(),
        help="To supply your own, custom registration configuration file.",
    )

    return parser
コード例 #3
0
def amend_cfg(new_atlas_folder=None, atlas=None):
    """
    Updates the registration config file to point to the correct atlas path
    :param new_atlas_folder:
    """
    print("Ensuring custom config file is correct")

    original_config = source_files.source_config_amap()
    new_config = source_files.source_custom_config_amap()
    if new_atlas_folder is not None:
        write_atlas_to_cfg(new_atlas_folder, atlas, original_config,
                           new_config)
コード例 #4
0
ファイル: man_seg_tools.py プロジェクト: ablot/neuro
def summarise_brain_regions(label_layers, filename):
    summaries = []
    for label_layer in label_layers:
        summaries.append(summarise_single_brain_region(label_layer))

    result = pd.concat(summaries)

    volume_header = "volume_mm3"
    length_columns = [
        "x_min_um",
        "y_min_um",
        "z_min_um",
        "x_max_um",
        "y_max_um",
        "z_max_um",
        "x_center_um",
        "y_center_um",
        "z_center_um",
    ]

    result.columns = ["region"] + [volume_header] + length_columns

    atlas_pixel_sizes = get_atlas_pixel_sizes(source_custom_config_amap())
    voxel_volume = get_voxel_volume(source_custom_config_amap()) / (1000**3)

    result[volume_header] = result[volume_header] * voxel_volume

    for header in length_columns:
        for dim in atlas_pixel_sizes.keys():
            if header.startswith(dim):
                scale = float(atlas_pixel_sizes[dim])
        assert scale > 0

        result[header] = result[header] * scale

    result.to_csv(filename, index=False)
コード例 #5
0
ファイル: cli.py プロジェクト: portugueslab/amap-python
def check_atlas_install(cfg_file_path=None):
    """
    Checks whether the atlas directory exists, and whether it's empty or not.
    :return: Whether the directory exists, and whether the files also exist
    """
    dir_exists = False
    files_exist = False
    if cfg_file_path is None:
        cfg_file_path = source_files.source_custom_config_amap()
    else:
        pass
    if os.path.exists(cfg_file_path):
        config_obj = get_config_obj(cfg_file_path)
        atlas_conf = config_obj["atlas"]
        atlas_directory = atlas_conf["base_folder"]
        if os.path.exists(atlas_directory):
            dir_exists = True
            if not os.listdir(atlas_directory) == []:
                files_exist = True

    return dir_exists, files_exist
コード例 #6
0
ファイル: man_seg_tools.py プロジェクト: ablot/neuro
def analyse_region_brain_areas(
    label_layer,
    destination_directory,
    annotations,
    hemispheres,
    structures_reference_df,
    extension=".csv",
    ignore_empty=True,
):
    """

    :param label_layer: napari labels layer (with segmented regions)
    :param np.array annotations: numpy array of the brain area annotations
    :param np.array hemispheres: numpy array of hemipshere annotations
    :param structures_reference_df: Pandas dataframe with "id" column (matching
    the values in "annotations" and a "name column"
    :param ignore_empty: If True, don't analyse empty regions
    """

    data = label_layer.data
    if ignore_empty:
        if data.sum() == 0:
            return

    # swap data back to original orientation from napari orientation
    data = np.swapaxes(data, 2, 0)
    name = label_layer.name

    masked_annotations = data.astype(bool) * annotations

    # TODO: don't hardcode hemisphere value. Get from atlas config
    annotations_left, annotations_right = lateralise_atlas(
        masked_annotations,
        hemispheres,
        left_hemisphere_value=2,
        right_hemisphere_value=1,
    )

    unique_vals_left, counts_left = np.unique(annotations_left,
                                              return_counts=True)
    unique_vals_right, counts_right = np.unique(annotations_right,
                                                return_counts=True)

    voxel_volume = get_voxel_volume(source_custom_config_amap())
    voxel_volume_in_mm = voxel_volume / (1000**3)

    df = initialise_df(
        "structure_name",
        "left_volume_mm3",
        "left_percentage_of_total",
        "right_volume_mm3",
        "right_percentage_of_total",
        "total_volume_mm3",
        "percentage_of_total",
    )

    sampled_structures = unique_elements_lists(
        list(unique_vals_left) + list(unique_vals_right))
    total_volume_region = get_total_volume_regions(unique_vals_left,
                                                   unique_vals_right,
                                                   counts_left, counts_right)

    for atlas_value in sampled_structures:
        if atlas_value != 0:
            try:
                df = add_structure_volume_to_df(
                    df,
                    atlas_value,
                    structures_reference_df,
                    unique_vals_left,
                    unique_vals_right,
                    counts_left,
                    counts_right,
                    voxel_volume_in_mm,
                    total_volume_voxels=total_volume_region,
                )

            except UnknownAtlasValue:
                print(
                    "Value: {} is not in the atlas structure reference file. "
                    "Not calculating the volume".format(atlas_value))
    filename = destination_directory / (name + extension)
    df.to_csv(filename, index=False)
コード例 #7
0
amap_output_dir = Path(amap_output_dir)
annotations_image = load_any(amap_output_dir / reg_paths.ANNOTATIONS)
midpoint = int(annotations_image.shape[0] // 2)

hemispheres_image = load_any(amap_output_dir / reg_paths.HEMISPHERES)

sub_region_values = list(sub_regions["id"])
region_mask = np.isin(annotations_image, sub_region_values)

left_region_mask = region_mask * (hemispheres_image == left_hemisphere_value)
right_region_mask = region_mask * (hemispheres_image == right_hemisphere_value)

left_region_summary = regionprops(left_region_mask.astype(np.int8))[0]
right_region_summary = regionprops(right_region_mask.astype(np.int8))[0]

atlas_pixel_sizes = get_atlas_pixel_sizes(source_custom_config_amap())

results_dict = {
    "x_min_um_left":
    left_region_summary.bbox[0] * int(atlas_pixel_sizes["x"]),
    "y_min_um_left":
    left_region_summary.bbox[1] * int(atlas_pixel_sizes["y"]),
    "z_min_um_left":
    left_region_summary.bbox[2] * int(atlas_pixel_sizes["z"]),
    "x_max_um_left":
    left_region_summary.bbox[3] * int(atlas_pixel_sizes["x"]),
    "y_max_um_left":
    left_region_summary.bbox[4] * int(atlas_pixel_sizes["y"]),
    "z_max_um_left":
    left_region_summary.bbox[5] * int(atlas_pixel_sizes["z"]),
    "x_center_um_left":
コード例 #8
0
ファイル: cli.py プロジェクト: portugueslab/amap-python
def registration_parse(parser):
    registration_opt_parser = parser.add_argument_group("Registration options")
    registration_opt_parser.add_argument(
        "--registration-config",
        dest="registration_config",
        type=str,
        default=source_files.source_custom_config_amap(),
        help="To supply your own, custom registration configuration file.",
    )
    registration_opt_parser.add_argument(
        "--sort-input-file",
        dest="sort_input_file",
        action="store_true",
        help="If set to true, the input text file will be sorted using "
        "natural sorting. This means that the file paths will be "
        "sorted as would be expected by a human and "
        "not purely alphabetically",
    )

    registration_opt_parser.add_argument(
        "--no-save-downsampled",
        dest="no_save_downsampled",
        action="store_true",
        help="Dont save the downsampled brain before filtering.",
    )

    registration_opt_parser.add_argument(
        "--affine-n-steps",
        dest="affine_n_steps",
        type=check_positive_int,
        default=6,
    )
    registration_opt_parser.add_argument(
        "--affine-use-n-steps",
        dest="affine_use_n_steps",
        type=check_positive_int,
        default=5,
    )
    registration_opt_parser.add_argument(
        "--freeform-n-steps",
        dest="freeform_n_steps",
        type=check_positive_int,
        default=6,
    )
    registration_opt_parser.add_argument(
        "--freeform-use-n-steps",
        dest="freeform_use_n_steps",
        type=check_positive_int,
        default=4,
    )
    registration_opt_parser.add_argument(
        "--bending-energy-weight",
        dest="bending_energy_weight",
        type=check_positive_float,
        default=0.95,
    )
    registration_opt_parser.add_argument("--grid-spacing",
                                         dest="grid_spacing",
                                         type=int,
                                         default=-10)
    registration_opt_parser.add_argument(
        "--smoothing-sigma-reference",
        dest="smoothing_sigma_reference",
        type=float,
        default=-1.0,
    )
    registration_opt_parser.add_argument(
        "--smoothing-sigma-floating",
        dest="smoothing_sigma_floating",
        type=float,
        default=-1.0,
    )
    registration_opt_parser.add_argument(
        "--histogram-n-bins-floating",
        dest="histogram_n_bins_floating",
        type=check_positive_int,
        default=128,
    )
    registration_opt_parser.add_argument(
        "--histogram-n-bins-reference",
        dest="histogram_n_bins_reference",
        type=check_positive_int,
        default=128,
    )
    return parser
コード例 #9
0
 def get_atlas_config(self):
     if self._atlas_config is None:
         self._atlas_config = source_custom_config_amap()