コード例 #1
0
    def test(self):

        path = EnvironmentSettings.tmp_test_path / "integration_sequence_classification/"
        dataset = self.create_dataset(path)

        os.environ["cache_type"] = "test"
        encoder_params = {
            "normalization_type": NormalizationType.RELATIVE_FREQUENCY.name,
            "reads": ReadsType.UNIQUE.name,
            "sequence_encoding": SequenceEncodingType.CONTINUOUS_KMER.name,
            "k": 3
        }

        hp_setting = HPSetting(encoder=KmerFrequencyEncoder.build_object(
            dataset, **encoder_params),
                               encoder_params=encoder_params,
                               ml_method=LogisticRegression(),
                               ml_params={
                                   "model_selection_cv": False,
                                   "model_selection_n_folds": -1
                               },
                               preproc_sequence=[])

        lc = LabelConfiguration()
        lc.add_label("l1", [1, 2])

        instruction = TrainMLModelInstruction(
            dataset, GridSearch([hp_setting]), [hp_setting],
            SplitConfig(SplitType.RANDOM, 1, 0.5, reports=ReportConfig()),
            SplitConfig(SplitType.RANDOM, 1, 0.5, reports=ReportConfig()),
            {Metric.BALANCED_ACCURACY}, Metric.BALANCED_ACCURACY, lc, path)

        result = instruction.run(result_path=path)

        shutil.rmtree(path)
コード例 #2
0
    def test_run(self):

        path = EnvironmentSettings.root_path / "test/tmp/smmodel/"
        PathBuilder.build(path)
        repertoires, metadata = RepertoireBuilder.build(
            [["AAA", "CCC"], ["TTTT"], ["AAA", "CCC"],
             ["TTTT"], ["AAA", "CCC"], ["TTTT"], ["AAA", "CCC"], ["TTTT"],
             ["AAA", "CCC"], ["TTTT"], ["AAA", "CCC"],
             ["TTTT"], ["AAA", "CCC"], ["TTTT"], ["AAA", "CCC"], ["TTTT"],
             ["AAA", "CCC"], ["TTTT"], ["AAA", "CCC"],
             ["TTTT"], ["AAA", "CCC"], ["TTTT"], ["AAA", "CCC"], ["TTTT"],
             ["AAA", "CCC"], ["TTTT"], ["AAA", "CCC"], ["TTTT"],
             ["AAA", "CCC"], ["TTTT"], ["AAA", "CCC"], ["TTTT"]], path, {
                 "default": [
                     1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,
                     2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
                 ]
             })
        dataset = RepertoireDataset(repertoires=repertoires,
                                    labels={"default": [1, 2]},
                                    metadata_file=metadata)

        label_config = LabelConfiguration()
        label_config.add_label("default", [1, 2])

        hp_settings = [
            HPSetting(
                Word2VecEncoder.build_object(
                    dataset, **{
                        "vector_size": 8,
                        "model_type": ModelType.SEQUENCE.name,
                        "k": 3
                    }), {
                        "vector_size": 8,
                        "model_type": ModelType.SEQUENCE.name,
                        "k": 3
                    }, LogisticRegression(), {
                        "model_selection_cv": False,
                        "model_selection_n_folds": -1
                    }, [])
        ]

        split_config_assessment = SplitConfig(SplitType.RANDOM, 1, 0.5,
                                              ReportConfig())
        split_config_selection = SplitConfig(SplitType.RANDOM, 1, 0.5,
                                             ReportConfig())

        instruction = TrainMLModelInstruction(
            dataset, GridSearch(hp_settings), hp_settings,
            split_config_assessment, split_config_selection,
            {Metric.BALANCED_ACCURACY}, Metric.BALANCED_ACCURACY, label_config,
            path)
        semantic_model = SemanticModel([instruction], path)

        semantic_model.run()

        shutil.rmtree(path)
コード例 #3
0
    def _parse_split_config(self, instruction_key, instruction: dict, split_key: str, symbol_table: SymbolTable, settings_count: int) -> SplitConfig:

        try:

            default_params = DefaultParamsLoader.load("instructions/", SplitConfig.__name__)
            report_config_input = self._prepare_report_config(instruction_key, instruction, split_key, symbol_table)
            instruction[split_key] = {**default_params, **instruction[split_key]}

            split_strategy = SplitType[instruction[split_key]["split_strategy"].upper()]
            training_percentage = float(instruction[split_key]["training_percentage"]) if split_strategy == SplitType.RANDOM else -1

            if split_strategy == SplitType.RANDOM and training_percentage == 1 and settings_count > 1:
                raise ValueError(f"{TrainMLModelParser.__name__}: all data under {instruction_key}/{split_key} was specified to be used for "
                                 f"training, but {settings_count} settings were specified for evaluation. Please define a test/validation set by "
                                 f"reducing the training percentage (e.g., to 0.7) or use only one hyperparameter setting to run the analysis.")

            return SplitConfig(split_strategy=split_strategy,
                               split_count=int(instruction[split_key]["split_count"]),
                               training_percentage=training_percentage,
                               reports=ReportConfig(**report_config_input),
                               manual_config=ManualSplitConfig(**instruction[split_key]["manual_config"]) if "manual_config" in instruction[split_key] else None,
                               leave_one_out_config=LeaveOneOutConfig(**instruction[split_key]["leave_one_out_config"])
                               if "leave_one_out_config" in instruction[split_key] else None)

        except KeyError as key_error:
            raise KeyError(f"{TrainMLModelParser.__name__}: parameter {key_error.args[0]} was not defined under {split_key}.")
コード例 #4
0
ファイル: SplitConfig.py プロジェクト: knutdrand/immuneML
 def __init__(self, split_strategy: SplitType, split_count: int, training_percentage: float = None, reports: ReportConfig = None,
              manual_config: ManualSplitConfig = None, leave_one_out_config: LeaveOneOutConfig = None):
     self.split_strategy = split_strategy
     self.split_count = split_count
     self.training_percentage = training_percentage
     self.reports = reports if reports is not None else ReportConfig()
     self.manual_config = manual_config
     self.leave_one_out_config = leave_one_out_config
コード例 #5
0
    def test_run(self):

        path = EnvironmentSettings.tmp_test_path / "hpoptimproc/"
        PathBuilder.build(path)

        repertoires, metadata = RepertoireBuilder.build(
            sequences=[["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"],
                       ["AAA", "CCC", "DDD"], ["AAA", "CCC", "DDD"]],
            path=path,
            labels={
                "l1": [
                    1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2,
                    1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
                ],
                "l2": [
                    0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1,
                    0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
                ]
            })

        dataset = RepertoireDataset(repertoires=repertoires,
                                    metadata_file=metadata,
                                    labels={
                                        "l1": [1, 2],
                                        "l2": [0, 1]
                                    })
        enc1 = {
            "k": 3,
            "model_type": ModelType.SEQUENCE.name,
            "vector_size": 4
        }
        enc2 = {
            "k": 3,
            "model_type": ModelType.SEQUENCE.name,
            "vector_size": 6
        }
        hp_settings = [
            HPSetting(Word2VecEncoder.build_object(dataset, **enc1), enc1,
                      LogisticRegression(), {
                          "model_selection_cv": False,
                          "model_selection_n_folds": -1
                      }, []),
            HPSetting(
                Word2VecEncoder.build_object(dataset, **enc2), enc2, SVM(), {
                    "model_selection_cv": False,
                    "model_selection_n_folds": -1
                },
                [ClonesPerRepertoireFilter(lower_limit=-1, upper_limit=1000)])
        ]

        report = SequenceLengthDistribution()
        label_config = LabelConfiguration(
            [Label("l1", [1, 2]), Label("l2", [0, 1])])

        process = TrainMLModelInstruction(
            dataset, GridSearch(hp_settings), hp_settings,
            SplitConfig(SplitType.RANDOM,
                        1,
                        0.5,
                        reports=ReportConfig(data_splits={"seqlen": report})),
            SplitConfig(SplitType.RANDOM,
                        1,
                        0.5,
                        reports=ReportConfig(data_splits={"seqlen": report})),
            {Metric.BALANCED_ACCURACY}, Metric.BALANCED_ACCURACY, label_config,
            path)

        state = process.run(result_path=path)

        self.assertTrue(isinstance(state, TrainMLModelState))
        self.assertEqual(1, len(state.assessment_states))
        self.assertTrue("l1" in state.assessment_states[0].label_states)
        self.assertTrue("l2" in state.assessment_states[0].label_states)

        shutil.rmtree(path)