def test_create_kmers_within_HD(self): kmers = KmerHelper.create_kmers_within_HD("ACT", list("ACTEF"), 1) self.assertEqual(15, len(kmers)) for i in range(15): self.assertTrue(set("ACT").intersection(set(kmers[i][1])))
def create_model(self, dataset: RepertoireDataset, k: int, vector_size: int, batch_size: int, model_path: Path): model = Word2Vec(size=vector_size, min_count=1, window=5) # creates an empty model all_kmers = KmerHelper.create_all_kmers( k=k, alphabet=EnvironmentSettings.get_sequence_alphabet()) all_kmers = [[kmer] for kmer in all_kmers] model.build_vocab(all_kmers) for kmer in all_kmers: sentences = KmerHelper.create_kmers_within_HD( kmer=kmer[0], alphabet=EnvironmentSettings.get_sequence_alphabet(), distance=1) model.train(sentences=sentences, total_words=len(all_kmers), epochs=model.epochs) model.save(str(model_path)) return model