コード例 #1
0
ファイル: MLImport.py プロジェクト: uio-bmi/immuneML
    def import_hp_setting(config_dir: Path) -> Tuple[HPSetting, Label]:

        config = MLMethodConfiguration()
        config.load(config_dir / 'ml_config.yaml')

        ml_method = ReflectionHandler.get_class_by_name(
            config.ml_method, 'ml_methods/')()
        ml_method.load(config_dir)

        encoder = MLImport.import_encoder(config, config_dir)
        preprocessing_sequence = MLImport.import_preprocessing_sequence(
            config, config_dir)

        labels = list(config.labels_with_values.keys())
        assert len(
            labels
        ) == 1, "MLImport: Multiple labels set in a single ml_config file."

        label = Label(labels[0], config.labels_with_values[labels[0]])

        return HPSetting(
            encoder=encoder,
            encoder_params=config.encoding_parameters,
            encoder_name=config.encoding_name,
            ml_method=ml_method,
            ml_method_name=config.ml_method_name,
            ml_params={},
            preproc_sequence=preprocessing_sequence,
            preproc_sequence_name=config.preprocessing_sequence_name), label
コード例 #2
0
ファイル: ObjectParser.py プロジェクト: uio-bmi/immuneML
    def parse_object(specs,
                     valid_class_names: list,
                     class_name_ending: str,
                     class_path: str,
                     location: str,
                     key: str,
                     builder: bool = False,
                     return_params_dict: bool = False):
        class_name = ObjectParser.get_class_name(specs, valid_class_names,
                                                 class_name_ending, location,
                                                 key)
        ParameterValidator.assert_in_valid_list(class_name, valid_class_names,
                                                location, key)

        cls = ReflectionHandler.get_class_by_name(
            f"{class_name}{class_name_ending}", class_path)
        params = ObjectParser.get_all_params(specs, class_path, class_name,
                                             key)

        try:
            if "name" not in inspect.signature(cls.__init__).parameters.keys():
                del params["name"]
            obj = cls.build_object(
                **params) if builder and hasattr(cls, "build_object") else cls(
                    **params)
        except TypeError as err:
            raise AssertionError(
                f"{location}: invalid parameter {err.args[0]} when specifying parameters in {specs} "
                f"under key {key}. Valid parameter names are: "
                f"{[name for name in inspect.signature(cls.__init__).parameters.keys()]}"
            )

        return (obj, {class_name: params}) if return_params_dict else obj
コード例 #3
0
 def _parse_to_enum_instances(params, location):
     for key in params.keys():
         class_name = DefaultParamsLoader._convert_to_camel_case(key)
         if ReflectionHandler.exists(class_name, location):
             cls = ReflectionHandler.get_class_by_name(class_name, location)
             params[key] = cls[params[key].upper()]
     return params
コード例 #4
0
    def prepare_reference(reference_params: dict, location: str, paired: bool):
        ParameterValidator.assert_keys(list(reference_params.keys()), ["format", "params"], location,
                                       "reference")

        seq_import_params = reference_params["params"] if "params" in reference_params else {}

        assert os.path.isfile(seq_import_params["path"]), f"{location}: the file {seq_import_params['path']} does not exist. " \
                                                  f"Specify the correct path under reference."

        if "is_repertoire" in seq_import_params:
            assert seq_import_params["is_repertoire"] == False, f"{location}: is_repertoire must be False for SequenceImport"
        else:
            seq_import_params["is_repertoire"] = False

        if "paired" in seq_import_params:
            assert seq_import_params["paired"] == paired, f"{location}: paired must be {paired} for SequenceImport"
        else:
            seq_import_params["paired"] = paired

        format_str = reference_params["format"]

        import_class = ReflectionHandler.get_class_by_name("{}Import".format(format_str))
        default_params = DefaultParamsLoader.load(EnvironmentSettings.default_params_path / "datasets",
                                          DefaultParamsLoader.convert_to_snake_case(format_str))

        params = {**default_params, **seq_import_params}

        processed_params = DatasetImportParams.build_object(**params)

        receptors = ImportHelper.import_items(import_class, reference_params["params"]["path"], processed_params)

        return receptors
コード例 #5
0
ファイル: ImportParser.py プロジェクト: dn070017/immuneML
    def _parse_dataset(key: str, dataset_specs: dict,
                       symbol_table: SymbolTable,
                       result_path: Path) -> SymbolTable:
        location = "ImportParser"

        ParameterValidator.assert_keys(list(dataset_specs.keys()),
                                       ImportParser.valid_keys, location,
                                       f"datasets:{key}", False)

        valid_formats = ReflectionHandler.all_nonabstract_subclass_basic_names(
            DataImport, "Import", "IO/dataset_import/")
        ParameterValidator.assert_in_valid_list(dataset_specs["format"],
                                                valid_formats, location,
                                                "format")

        import_cls = ReflectionHandler.get_class_by_name("{}Import".format(
            dataset_specs["format"]))
        params = ImportParser._prepare_params(dataset_specs, result_path, key)

        if "is_repertoire" in params:
            ParameterValidator.assert_type_and_value(params["is_repertoire"],
                                                     bool, location,
                                                     "is_repertoire")

            if params["is_repertoire"] == True:
                if import_cls != IReceptorImport:
                    assert "metadata_file" in params, f"{location}: Missing parameter: metadata_file under {key}/params/"
                    ParameterValidator.assert_type_and_value(
                        params["metadata_file"], Path, location,
                        "metadata_file")

            if params["is_repertoire"] == False:
                assert "paired" in params, f"{location}: Missing parameter: paired under {key}/params/"
                ParameterValidator.assert_type_and_value(
                    params["paired"], bool, location, "paired")

                if params["paired"] == True:
                    assert "receptor_chains" in params, f"{location}: Missing parameter: receptor_chains under {key}/params/"
                    ParameterValidator.assert_in_valid_list(
                        params["receptor_chains"],
                        ["_".join(cp.value) for cp in ChainPair], location,
                        "receptor_chains")

        try:
            dataset = import_cls.import_dataset(params, key)
            dataset.name = key
            symbol_table.add(key, SymbolType.DATASET, dataset)
        except KeyError as key_error:
            raise KeyError(
                f"{key_error}\n\nAn error occurred during parsing of dataset {key}. "
                f"The keyword {key_error.args[0]} was missing. This either means this argument was "
                f"not defined under definitions/datasets/{key}/params, or this column was missing from "
                f"an input data file. ")
        except Exception as ex:
            raise Exception(
                f"{ex}\n\nAn error occurred while parsing the dataset {key}. See the log above for more details."
            )

        return symbol_table
コード例 #6
0
 def build_object(dataset=None, **params):
     try:
         prepared_params = KmerFrequencyEncoder._prepare_parameters(**params)
         encoder = ReflectionHandler.get_class_by_name(KmerFrequencyEncoder.dataset_mapping[dataset.__class__.__name__],
                                                       "kmer_frequency/")(**prepared_params)
     except ValueError:
         raise ValueError("{} is not defined for dataset of type {}.".format(KmerFrequencyEncoder.__name__, dataset.__class__.__name__))
     return encoder
コード例 #7
0
ファイル: ObjectParser.py プロジェクト: uio-bmi/immuneML
 def get_class(specs, valid_class_names, class_name_ending, class_path,
               location, key):
     class_name = ObjectParser.get_class_name(specs, valid_class_names,
                                              class_name_ending, location,
                                              key)
     cls = ReflectionHandler.get_class_by_name(
         f"{class_name}{class_name_ending}", class_path)
     return cls
コード例 #8
0
 def build_object(dataset=None, **params):
     try:
         prepared_params = EvennessProfileEncoder._prepare_parameters(**params)
         encoder = ReflectionHandler.get_class_by_name(EvennessProfileEncoder.dataset_mapping[dataset.__class__.__name__],
                                                       "evenness_profile/")(**prepared_params)
     except ValueError:
         raise ValueError("{} is not defined for dataset of type {}.".format(EvennessProfileEncoder.__name__, dataset.__class__.__name__))
     return encoder
コード例 #9
0
 def build_object(dataset=None, **params):
     try:
         prepared_params = MatchedRegexEncoder._prepare_parameters(**params)
         encoder = ReflectionHandler.get_class_by_name(
             MatchedRegexEncoder.dataset_mapping[dataset.__class__.__name__], "reference_encoding/")(**prepared_params)
     except ValueError:
         raise ValueError("{} is not defined for dataset of type {}.".format(MatchedRegexEncoder.__name__,
                                                                             dataset.__class__.__name__))
     return encoder
コード例 #10
0
ファイル: InstructionParser.py プロジェクト: uio-bmi/immuneML
    def parse_instruction(key: str, instruction: dict, symbol_table: SymbolTable, path) -> tuple:

        ParameterValidator.assert_keys_present(list(instruction.keys()), ["type"], InstructionParser.__name__, key)
        valid_instructions = [cls[:-6] for cls in ReflectionHandler.discover_classes_by_partial_name("Parser", "dsl/instruction_parsers/")]
        ParameterValidator.assert_in_valid_list(instruction["type"], valid_instructions, "InstructionParser", "type")

        default_params = DefaultParamsLoader.load("instructions/", instruction["type"])
        instruction = {**default_params, **instruction}
        parser = ReflectionHandler.get_class_by_name("{}Parser".format(instruction["type"]), "instruction_parsers/")()
        instruction_object = parser.parse(key, instruction, symbol_table, path)

        symbol_table.add(key, SymbolType.INSTRUCTION, instruction_object)
        return instruction, symbol_table
コード例 #11
0
    def parse(self,
              key: str,
              instruction: dict,
              symbol_table: SymbolTable,
              path: Path = None) -> SubsamplingInstruction:
        valid_keys = [
            "type", "dataset", "subsampled_dataset_sizes",
            "dataset_export_formats"
        ]
        ParameterValidator.assert_keys(instruction.keys(), valid_keys,
                                       SubsamplingParser.__name__, key)

        dataset_keys = symbol_table.get_keys_by_type(SymbolType.DATASET)
        ParameterValidator.assert_in_valid_list(instruction['dataset'],
                                                dataset_keys,
                                                SubsamplingParser.__name__,
                                                f'{key}/dataset')

        dataset = symbol_table.get(instruction['dataset'])
        ParameterValidator.assert_type_and_value(
            instruction['subsampled_dataset_sizes'], list,
            SubsamplingParser.__name__, f'{key}/subsampled_dataset_sizes')
        ParameterValidator.assert_all_type_and_value(
            instruction['subsampled_dataset_sizes'], int,
            SubsamplingParser.__name__, f'{key}/subsampled_dataset_sizes', 1,
            dataset.get_example_count())

        valid_export_formats = ReflectionHandler.all_nonabstract_subclass_basic_names(
            DataExporter, 'Exporter', "dataset_export/")
        ParameterValidator.assert_type_and_value(
            instruction['dataset_export_formats'], list,
            SubsamplingParser.__name__, f"{key}/dataset_export_formats")
        ParameterValidator.assert_all_in_valid_list(
            instruction['dataset_export_formats'], valid_export_formats,
            SubsamplingParser.__name__, f"{key}/dataset_export_formats")

        return SubsamplingInstruction(
            dataset=dataset,
            subsampled_dataset_sizes=instruction['subsampled_dataset_sizes'],
            dataset_export_formats=[
                ReflectionHandler.get_class_by_name(export_format + "Exporter",
                                                    "dataset_export/")
                for export_format in instruction['dataset_export_formats']
            ],
            name=key)
コード例 #12
0
ファイル: MLParser.py プロジェクト: dn070017/immuneML
    def _parse_ml_method(ml_method_id: str, ml_specification) -> tuple:

        valid_class_values = ReflectionHandler.all_nonabstract_subclass_basic_names(
            MLMethod, "", "ml_methods/")

        if type(ml_specification) is str:
            ml_specification = {ml_specification: {}}

        ml_specification = {
            **DefaultParamsLoader.load("ml_methods/", "MLMethod"),
            **ml_specification
        }
        ml_specification_keys = list(ml_specification.keys())

        ParameterValidator.assert_all_in_valid_list(
            list(ml_specification_keys),
            ["model_selection_cv", "model_selection_n_folds"] +
            valid_class_values, "MLParser", ml_method_id)

        non_default_keys = [
            key for key in ml_specification.keys()
            if key not in ["model_selection_cv", "model_selection_n_folds"]
        ]

        assert len(ml_specification_keys) == 3, f"MLParser: ML method {ml_method_id} was not correctly specified. Expected at least 1 key " \
                                                f"(ML method name), got {len(ml_specification_keys) - 2} instead: " \
                                                f"{str([key for key in non_default_keys])[1:-1]}."

        ml_method_class_name = non_default_keys[0]
        ml_method_class = ReflectionHandler.get_class_by_name(
            ml_method_class_name, "ml_methods/")

        ml_specification[ml_method_class_name] = {
            **DefaultParamsLoader.load("ml_methods/",
                                       ml_method_class_name,
                                       log_if_missing=False),
            **ml_specification[ml_method_class_name]
        }

        method, params = MLParser.create_method_instance(
            ml_specification, ml_method_class, ml_method_id)
        ml_specification[ml_method_class_name] = params
        method.name = ml_method_id

        return method, ml_specification
コード例 #13
0
    def parse_exporters(self, instruction):
        if instruction["export_formats"] is not None:
            class_path = "dataset_export/"
            ParameterValidator.assert_all_in_valid_list(
                instruction["export_formats"],
                ReflectionHandler.all_nonabstract_subclass_basic_names(
                    DataExporter, 'Exporter', class_path),
                location="SimulationParser",
                parameter_name="export_formats")
            exporters = [
                ReflectionHandler.get_class_by_name(f"{item}Exporter",
                                                    class_path)
                for item in instruction["export_formats"]
            ]
        else:
            exporters = None

        return exporters
コード例 #14
0
    def _load_batch(self, current_file: int):

        element_class = ReflectionHandler.get_class_by_name(
            self.element_class_name, "data_model")
        assert hasattr(element_class, 'create_from_record'), \
            f"{ElementGenerator.__name__}: cannot load the binary file, the class {element_class.__name__} has no 'create_from_record' method."

        try:
            elements = [
                element_class.create_from_record(el)
                for el in np.load(self.file_list[current_file],
                                  allow_pickle=False)
            ]
        except ValueError as error:
            raise ValueError(
                f'{ElementGenerator.__name__}: an error occurred while creating an object from binary file. Details: {error}'
            )

        return elements
コード例 #15
0
ファイル: ImmuneMLApp.py プロジェクト: uio-bmi/immuneML
def run_immuneML(namespace: argparse.Namespace):
    if os.path.isdir(namespace.result_path) and len(
            os.listdir(namespace.result_path)) != 0:
        raise ValueError(
            f"Directory {namespace.result_path} already exists. Please specify a new output directory for the analysis."
        )
    PathBuilder.build(namespace.result_path)

    logging.basicConfig(filename=Path(namespace.result_path) / "log.txt",
                        level=logging.INFO,
                        format='%(asctime)s %(levelname)s: %(message)s')
    warnings.showwarning = lambda message, category, filename, lineno, file=None, line=None: logging.warning(
        message)

    if namespace.tool is None:
        app = ImmuneMLApp(namespace.specification_path, namespace.result_path)
    else:
        app_cls = ReflectionHandler.get_class_by_name(namespace.tool, "api/")
        app = app_cls(**vars(namespace))

    app.run()
コード例 #16
0
ファイル: ImmuneMLImport.py プロジェクト: uio-bmi/immuneML
    def _import_from_path(iml_params):
        with iml_params.path.open("r") as file:
            dataset_dict = yaml.safe_load(file)
        assert 'dataset_class' in dataset_dict, f"{ImmuneMLImport.__name__}: 'dataset_class' parameter is missing from the dataset file " \
                                                f"{iml_params.path}."
        dataset_class = ReflectionHandler.get_class_by_name(
            dataset_dict['dataset_class'])
        del dataset_dict['dataset_class']

        if iml_params.metadata_file is not None and iml_params.metadata_file != '':
            dataset_dict['metadata_file'] = iml_params.metadata_file

        cwd = Path.cwd()
        if 'metadata_file' in dataset_dict and Path(
                dataset_dict['metadata_file']).parent.samefile(
                    cwd) and not iml_params.path.samefile(cwd):
            dataset_dict['metadata_file'] = iml_params.path.parent / Path(
                dataset_dict['metadata_file']).name

        dataset = dataset_class.build(**dataset_dict)

        return dataset
コード例 #17
0
    def parse(self, key: str, instruction: dict, symbol_table: SymbolTable, path: Path = None) -> TrainMLModelInstruction:

        valid_keys = ["assessment", "selection", "dataset", "strategy", "labels", "metrics", "settings", "number_of_processes", "type", "reports",
                      "optimization_metric", 'refit_optimal_model', 'store_encoded_data']
        ParameterValidator.assert_type_and_value(instruction['settings'], list, TrainMLModelParser.__name__, 'settings')
        ParameterValidator.assert_keys(list(instruction.keys()), valid_keys, TrainMLModelParser.__name__, "TrainMLModel")
        ParameterValidator.assert_type_and_value(instruction['refit_optimal_model'], bool, TrainMLModelParser.__name__, 'refit_optimal_model')
        ParameterValidator.assert_type_and_value(instruction['metrics'], list, TrainMLModelParser.__name__, 'metrics')
        ParameterValidator.assert_type_and_value(instruction['optimization_metric'], str, TrainMLModelParser.__name__, 'optimization_metric')
        ParameterValidator.assert_type_and_value(instruction['number_of_processes'], int, TrainMLModelParser.__name__, 'number_of_processes')
        ParameterValidator.assert_type_and_value(instruction['strategy'], str, TrainMLModelParser.__name__, 'strategy')
        ParameterValidator.assert_type_and_value(instruction['store_encoded_data'], bool, TrainMLModelParser.__name__, 'store_encoded_data')
        if instruction["reports"] is not None:
            ParameterValidator.assert_type_and_value(instruction['reports'], list, TrainMLModelParser.__name__, 'reports')

        settings = self._parse_settings(instruction, symbol_table)
        dataset = symbol_table.get(instruction["dataset"])
        assessment = self._parse_split_config(key, instruction, "assessment", symbol_table, len(settings))
        selection = self._parse_split_config(key, instruction, "selection", symbol_table, len(settings))
        assessment, selection = self._update_split_configs(assessment, selection, dataset)
        label_config = self._create_label_config(instruction, dataset, key)
        strategy = ReflectionHandler.get_class_by_name(instruction["strategy"], "hyperparameter_optimization/")
        metrics = {Metric[metric.upper()] for metric in instruction["metrics"]}
        optimization_metric = Metric[instruction["optimization_metric"].upper()]
        metric_search_criterion = Metric.get_search_criterion(optimization_metric)
        path = self._prepare_path(instruction)
        context = self._prepare_context(instruction, symbol_table)
        reports = self._prepare_reports(instruction["reports"], symbol_table)

        hp_instruction = TrainMLModelInstruction(dataset=dataset, hp_strategy=strategy(settings, metric_search_criterion),
                                                 hp_settings=settings, assessment=assessment, selection=selection, metrics=metrics,
                                                 optimization_metric=optimization_metric, refit_optimal_model=instruction['refit_optimal_model'],
                                                 label_configuration=label_config, path=path, context=context,
                                                 store_encoded_data=instruction['store_encoded_data'],
                                                 number_of_processes=instruction["number_of_processes"], reports=reports, name=key)

        return hp_instruction
コード例 #18
0
    def parse(self,
              key: str,
              instruction: dict,
              symbol_table: SymbolTable,
              path: Path = None) -> DatasetExportInstruction:
        location = "DatasetExportParser"
        ParameterValidator.assert_keys(
            list(instruction.keys()), DatasetExportParser.REQUIRED_KEYS +
            DatasetExportParser.OPTIONAL_KEYS, location, key, False)
        ParameterValidator.assert_keys_present(
            list(instruction.keys()), DatasetExportParser.REQUIRED_KEYS,
            location, key)

        valid_formats = ReflectionHandler.all_nonabstract_subclass_basic_names(
            DataExporter, "Exporter", 'dataset_export/')
        ParameterValidator.assert_all_in_valid_list(
            instruction["export_formats"], valid_formats, location,
            "export_formats")
        ParameterValidator.assert_all_in_valid_list(
            instruction["datasets"],
            symbol_table.get_keys_by_type(SymbolType.DATASET), location,
            "datasets")

        return DatasetExportInstruction(
            datasets=[
                symbol_table.get(dataset_key)
                for dataset_key in instruction["datasets"]
            ],
            exporters=[
                ReflectionHandler.get_class_by_name(f"{key}Exporter",
                                                    "dataset_export/")
                for key in instruction["export_formats"]
            ],
            preprocessing_sequence=symbol_table.get(
                instruction["preprocessing_sequence"])
            if "preprocessing_sequence" in instruction else None,
            name=key)
コード例 #19
0
ファイル: SignalParser.py プロジェクト: uio-bmi/immuneML
    def _get_implanting_strategy(key: str,
                                 signal: dict) -> SignalImplantingStrategy:

        valid_strategies = [
            cls[:-10]
            for cls in ReflectionHandler.discover_classes_by_partial_name(
                "Implanting", "simulation/signal_implanting_strategy/")
        ]
        ParameterValidator.assert_in_valid_list(signal["implanting"],
                                                valid_strategies,
                                                "SignalParser", key)

        defaults = DefaultParamsLoader.load(
            "signal_implanting_strategy/", f"{signal['implanting']}Implanting")
        signal = {**defaults, **signal}

        ParameterValidator.assert_keys_present(
            list(signal.keys()),
            ["motifs", "implanting", "sequence_position_weights"],
            SignalParser.__name__, key)

        implanting_comp = None
        if 'implanting_computation' in signal:
            implanting_comp = signal['implanting_computation'].lower()
            ParameterValidator.assert_in_valid_list(
                implanting_comp,
                [el.name.lower() for el in ImplantingComputation],
                SignalParser.__name__, 'implanting_computation')
            implanting_comp = ImplantingComputation[implanting_comp.upper()]

        implanting_strategy = ReflectionHandler.get_class_by_name(
            f"{signal['implanting']}Implanting")(
                GappedMotifImplanting(), signal["sequence_position_weights"],
                implanting_comp)

        return implanting_strategy
コード例 #20
0
 def test_get_class_by_name(self):
     cls = ReflectionHandler.get_class_by_name("KmerHelper", "util")
     self.assertEqual(KmerHelper, cls)
コード例 #21
0
 def make_report_builder(self):
     report_builder = ReflectionHandler.get_class_by_name(
         f"{self.output['format']}Builder", "presentation/")
     return report_builder
コード例 #22
0
ファイル: MLImport.py プロジェクト: uio-bmi/immuneML
 def import_encoder(config: MLMethodConfiguration, config_dir: Path):
     encoder_class = ReflectionHandler.get_class_by_name(
         config.encoding_class)
     encoder = encoder_class.load_encoder(config_dir / config.encoding_file)
     return encoder
コード例 #23
0
ファイル: EncodingParser.py プロジェクト: uio-bmi/immuneML
 def parse_encoder_internal(short_class_name: str, encoder_params: dict):
     encoder_class = ReflectionHandler.get_class_by_name(
         f"{short_class_name}Encoder", "encodings")
     params = ObjectParser.get_all_params(
         {short_class_name: encoder_params}, "encodings", short_class_name)
     return encoder_class, params, params
コード例 #24
0
 def _prepare_sequence_encoder(self):
     class_name = self.sequence_encoding.value
     sequence_encoder = ReflectionHandler.get_class_by_name(
         class_name, "encodings/")
     return sequence_encoder