def test_deduplication_works(): # toy sample (the last two samples are outliers) X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [6, 3], [4, -7]] y = [0] * 6 + [1] * 2 X_test = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [10, 5], [5, -7]] # Test LOF clf = SkopeRulesClassifier(random_state=rng, max_samples=1., max_depth_duplication=3) clf.fit(X, y) decision_func = clf.decision_function(X_test) rules_vote = clf.rules_vote(X_test) score_top_rules = clf.score_top_rules(X_test) pred = clf.predict(X_test) pred_score_top_rules = clf.predict_top_rules(X_test, 1) assert True, 'deduplication works'
def test_skope_rules_works(): # toy sample (the last two samples are outliers) X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [6, 3], [4, -7]] y = [0] * 6 + [1] * 2 X_test = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [10, 5], [5, -7]] # Test LOF clf = SkopeRulesClassifier(random_state=rng, max_samples=1.) clf.fit(X, y) decision_func = clf.decision_function(X_test) rules_vote = clf.rules_vote(X_test) score_top_rules = clf.score_top_rules(X_test) pred = clf.predict(X_test) pred_score_top_rules = clf.predict_top_rules(X_test, 1) # assert detect outliers: assert np.min(decision_func[-2:]) > np.max(decision_func[:-2]) assert np.min(rules_vote[-2:]) > np.max(rules_vote[:-2]) assert np.min(score_top_rules[-2:]) > np.max(score_top_rules[:-2]) assert_array_equal(pred, 6 * [0] + 2 * [1]) assert_array_equal(pred_score_top_rules, 6 * [0] + 2 * [1])