コード例 #1
0
    from sys import platform

    from impl.data.simple_2d_point_data_provider import Simple2DPointDataProvider
    from impl.nn.base.embedding_nn.simple_fc_embedding import SimpleFCEmbedding

    is_linux = platform == "linux" or platform == "linux2"
    top_dir = "/cluster/home/meierbe8/data/MT/" if is_linux else "G:/tmp/"

    fixedc = 3
    dp = Simple2DPointDataProvider(min_cluster_count=fixedc,
                                   max_cluster_count=fixedc,
                                   allow_less_clusters=False,
                                   use_extended_data_gen=True)
    # dp = Simple2DPointDataProvider(min_cluster_count=1, max_cluster_count=10, allow_less_clusters=False)
    en = SimpleFCEmbedding(output_size=8,
                           hidden_layers=[16, 32, 64, 64],
                           hidden_activation=LeakyReLU(),
                           final_activation='tanh')
    # en = None

    c_nn = ClusterNNTry00_V11(dp,
                              102,
                              en,
                              lstm_layers=5,
                              lstm_units=96,
                              cluster_count_dense_layers=1,
                              cluster_count_dense_units=128,
                              output_dense_layers=1,
                              output_dense_units=128)
    c_nn.include_self_comparison = False
    c_nn.weighted_classes = True
    c_nn.class_weights_approximation = 'stochastic'
コード例 #2
0
import matplotlib
matplotlib.use('Agg')

from impl.nn.try01.cluster_nn_try01 import ClusterNNTry01

if __name__ == '__main__':
    from sys import platform

    from impl.data.simple_2d_point_data_provider import Simple2DPointDataProvider
    from impl.nn.base.embedding_nn.simple_fc_embedding import SimpleFCEmbedding

    is_linux = platform == "linux" or platform == "linux2"
    top_dir = "/cluster/home/meierbe8/data/MT/" if is_linux else "G:/tmp/"

    dp = Simple2DPointDataProvider()
    en = SimpleFCEmbedding()
    #en = None # DO NOT USE ANY embedding (just use the twodimensional-points)

    c_nn = ClusterNNTry01(dp, 50, en, iterations=2)
    c_nn.minibatch_size = 96

    c_nn.build_networks()

    # Enable autosave and try to load the latest configuration
    autosave_dir = top_dir + 'test/autosave_ClusterNNTry01'
    c_nn.register_autosave(autosave_dir)
    c_nn.try_load_from_autosave(autosave_dir)

    # Train a loooong time
    c_nn.train(1000000)
コード例 #3
0
                      cnn_layers_per_block=1,
                      block_feature_counts=[32, 64],
                      fc_layer_feature_counts=[],
                      hidden_activation='relu',
                      final_activation='relu',
                      batch_norm_for_init_layer=True,
                      cnn_filter_size=5)

    fixedc = 2
    dp = Simple2DPointDataProvider(min_cluster_count=fixedc,
                                   max_cluster_count=fixedc,
                                   allow_less_clusters=False)
    en = None
    # dp = Simple2DPointDataProvider(min_cluster_count=1, max_cluster_count=10, allow_less_clusters=False)
    en = SimpleFCEmbedding(output_size=3,
                           hidden_layers=[2],
                           final_activation='tanh')

    c_nn = ClusterNNMergedInputs(dp, 3, en)
    c_nn.minibatch_size = 2
    c_nn.validate_every_nth_epoch = 1
    c_nn.debug_mode = True

    # c_nn.use_cluster_count_loss = False
    # c_nn.use_similarities_loss = False
    # c_nn.fixed_cluster_count_output = dp.get_max_cluster_count()

    # c_nn.f_cluster_count = lambda: 10
    # c_nn.minibatch_size = 200

    # c_nn._get_keras_loss()
if __name__ == '__main__':
    from sys import platform

    from impl.data.simple_2d_point_data_provider import Simple2DPointDataProvider
    from impl.nn.base.embedding_nn.simple_fc_embedding import SimpleFCEmbedding

    is_linux = platform == "linux" or platform == "linux2"
    top_dir = "/cluster/home/meierbe8/data/MT/" if is_linux else "G:/tmp/"

    testing = False

    if testing:

        dp = Simple2DPointDataProvider(min_cluster_count=3,
                                       max_cluster_count=3)
        en = SimpleFCEmbedding(hidden_layers=0, output_size=2)
        en = None
        #en = None # DO NOT USE ANY embedding (just use the twodimensional-points)

        c_nn = ClusterNNTry03KMeansV04(dp,
                                       3,
                                       en,
                                       lstm_layers=0,
                                       lstm_units=8,
                                       kmeans_itrs=2,
                                       cluster_count_dense_layers=0,
                                       cluster_count_dense_units=1,
                                       kmeans_input_dimension=2)
        c_nn.weighted_classes = True
        c_nn.minibatch_size = 2
        c_nn.class_weights_post_processing_f = lambda x: np.sqrt(x)
コード例 #5
0
    # found, but some of them may be empty

    from sys import platform

    from impl.data.simple_2d_point_data_provider import Simple2DPointDataProvider
    from impl.nn.base.embedding_nn.simple_fc_embedding import SimpleFCEmbedding

    is_linux = platform == "linux" or platform == "linux2"
    top_dir = "/cluster/home/meierbe8/data/MT/" if is_linux else "G:/tmp/"

    fixedc = 7
    dp = Simple2DPointDataProvider(
        min_cluster_count=fixedc, max_cluster_count=fixedc, allow_less_clusters=False
    )
    # dp = Simple2DPointDataProvider(min_cluster_count=1, max_cluster_count=10, allow_less_clusters=False)
    en = SimpleFCEmbedding(output_size=2, hidden_layers=[16, 32, 64, 64], final_activation='tanh')
    # en = None

    c_nn = ClusterNNTry00_V02(dp, 50, en, lstm_layers=15, lstm_units=128, cluster_count_dense_layers=1, cluster_count_dense_units=128,
                          output_dense_layers=1, output_dense_units=256)
    c_nn.weighted_classes = True
    c_nn.class_weights_approximation = 'stochastic'
    c_nn.minibatch_size = 200
    c_nn.class_weights_post_processing_f = lambda x: np.sqrt(x)
    c_nn.validate_every_nth_epoch = 10

    # c_nn.f_cluster_count = lambda: 10
    c_nn.minibatch_size = 200

    # i = 0
    # start = time()
コード例 #6
0
    from impl.data.image.cifar100_data_provider import Cifar100DataProvider
    from impl.data.image.birds200_data_provider import Birds200DataProvider
    from impl.data.audio.timit_data_provider import TIMITDataProvider
    from impl.nn.base.embedding_nn.cnn_embedding import CnnEmbedding
    from impl.nn.base.embedding_nn.cnn_bdlstm_embedding import CnnBDLSTMEmbedding
    from impl.nn.base.embedding_nn.simple_fc_embedding import SimpleFCEmbedding
    from impl.nn.base.embedding_nn.bdlstm_embedding import BDLSTMEmbedding

    is_linux = platform == "linux" or platform == "linux2"
    top_dir = "/cluster/home/meierbe8/data/MT/" if is_linux else "G:/tmp/"
    ds_dir = "./" if is_linux else "../"

    dp = Simple2DPointDataProvider(min_cluster_count=1,
                                   max_cluster_count=3,
                                   allow_less_clusters=False)
    en = SimpleFCEmbedding(hidden_layers=[2])

    autosave_dir = top_dir + 'test/autosave_ClusterNN_playground'

    # Define the possible input counts
    input_counts = [3, 4, 5]

    # Create an array with all possible models
    models = []

    master_network = None
    for input_count in reversed(sorted(input_counts)):
        print("Initialize model with {} inputs...".format(input_count))

        # cnn = ClusterNNMergedInputs(dp, input_count, en, weighted_classes=True)
        cnn = MinimalClusterNN(dp, input_count, en, weighted_classes=True)