コード例 #1
0
ファイル: movielens.py プロジェクト: yang0110/implicit
def calculate_similar_movies(output_filename, model_name="als", min_rating=4.0, variant="20m"):
    # read in the input data file
    start = time.time()
    titles, ratings = get_movielens(variant)

    # remove things < min_rating, and convert to implicit dataset
    # by considering ratings as a binary preference only
    ratings.data[ratings.data < min_rating] = 0
    ratings.eliminate_zeros()
    ratings.data = np.ones(len(ratings.data))

    log.info("read data file in %s", time.time() - start)

    # generate a recommender model based off the input params
    if model_name == "als":
        model = AlternatingLeastSquares()

        # lets weight these models by bm25weight.
        log.debug("weighting matrix by bm25_weight")
        ratings = (bm25_weight(ratings, B=0.9) * 5).tocsr()

    elif model_name == "bpr":
        model = BayesianPersonalizedRanking()

    elif model_name == "lmf":
        model = LogisticMatrixFactorization()

    elif model_name == "tfidf":
        model = TFIDFRecommender()

    elif model_name == "cosine":
        model = CosineRecommender()

    elif model_name == "bm25":
        model = BM25Recommender(B=0.2)

    else:
        raise NotImplementedError("TODO: model %s" % model_name)

    # train the model
    log.debug("training model %s", model_name)
    start = time.time()
    model.fit(ratings)
    log.debug("trained model '%s' in %s", model_name, time.time() - start)
    log.debug("calculating top movies")

    user_count = np.ediff1d(ratings.indptr)
    to_generate = sorted(np.arange(len(titles)), key=lambda x: -user_count[x])

    log.debug("calculating similar movies")
    with tqdm.tqdm(total=len(to_generate)) as progress:
        with codecs.open(output_filename, "w", "utf8") as o:
            for movieid in to_generate:
                # if this movie has no ratings, skip over (for instance 'Graffiti Bridge' has
                # no ratings > 4 meaning we've filtered out all data for it.
                if ratings.indptr[movieid] != ratings.indptr[movieid + 1]:
                    title = titles[movieid]
                    for other, score in model.similar_items(movieid, 11):
                        o.write("%s\t%s\t%s\n" % (title, titles[other], score))
                progress.update(1)
コード例 #2
0
ファイル: movielens.py プロジェクト: bananemure/implicit
def calculate_similar_movies(output_filename,
                             model_name="als", min_rating=4.0,
                             variant='20m'):
    # read in the input data file
    start = time.time()
    titles, ratings = get_movielens(variant)

    # remove things < min_rating, and convert to implicit dataset
    # by considering ratings as a binary preference only
    ratings.data[ratings.data < min_rating] = 0
    ratings.eliminate_zeros()
    ratings.data = np.ones(len(ratings.data))

    log.info("read data file in %s", time.time() - start)

    # generate a recommender model based off the input params
    if model_name == "als":
        model = AlternatingLeastSquares()

        # lets weight these models by bm25weight.
        log.debug("weighting matrix by bm25_weight")
        ratings = (bm25_weight(ratings,  B=0.9) * 5).tocsr()

    elif model_name == "bpr":
        model = BayesianPersonalizedRanking()

    elif model_name == "tfidf":
        model = TFIDFRecommender()

    elif model_name == "cosine":
        model = CosineRecommender()

    elif model_name == "bm25":
        model = BM25Recommender(B=0.2)

    else:
        raise NotImplementedError("TODO: model %s" % model_name)

    # train the model
    log.debug("training model %s", model_name)
    start = time.time()
    model.fit(ratings)
    log.debug("trained model '%s' in %s", model_name, time.time() - start)
    log.debug("calculating top movies")

    user_count = np.ediff1d(ratings.indptr)
    to_generate = sorted(np.arange(len(titles)), key=lambda x: -user_count[x])

    log.debug("calculating similar movies")
    with tqdm.tqdm(total=len(to_generate)) as progress:
        with codecs.open(output_filename, "w", "utf8") as o:
            for movieid in to_generate:
                # if this movie has no ratings, skip over (for instance 'Graffiti Bridge' has
                # no ratings > 4 meaning we've filtered out all data for it.
                if ratings.indptr[movieid] != ratings.indptr[movieid + 1]:
                    title = titles[movieid]
                    for other, score in model.similar_items(movieid, 11):
                        o.write("%s\t%s\t%s\n" % (title, titles[other], score))
                progress.update(1)
コード例 #3
0
def experiment(B, K1, conf, variant='20m', min_rating=3.0):
    # read in the input data file
    _, ratings = get_movielens(variant)
    ratings = ratings.tocsr()

    # remove things < min_rating, and convert to implicit dataset
    # by considering ratings as a binary preference only
    ratings.data[ratings.data < min_rating] = 0
    ratings.eliminate_zeros()
    ratings.data = np.ones(len(ratings.data))

    training = ratings.tolil() # makes a copy

    # remove some implicit ratings (make them zeros, i.e., missing)
    # (these ratings might have already been missing, in fact)
    movieids = np.random.randint(low=0, high=np.shape(ratings)[0], size=100000)
    userids = np.random.randint(low=0, high=np.shape(ratings)[1], size=100000)
    training[movieids, userids] = 0

    model = FaissAlternatingLeastSquares(factors=128, iterations=30)
    model.approximate_recommend = False
    model.approximate_similar_items = False
    model.show_progress = False

    # possibly recalculate scores by bm25weight.
    if B != "NA":
        training = bm25_weight(training, B=B, K1=K1).tocsr()

    # train the model
    model.fit(training)

    # compute the predicted ratings
    moviescores = np.einsum('ij,ij->i', model.item_factors[movieids], model.user_factors[userids])
    # using confidence threshold, find boolean predictions
    preds = (moviescores >= conf)
    true_ratings = np.ravel(ratings[movieids,userids])
    # both model predicted True and user rated movie
    tp = true_ratings[preds].sum()
    #tp = ratings[:,userids][preds][movieids].sum()
    # model predicted True but user did not rate movie
    fp = preds.sum() - tp
    # model predicted False but user did rate movie
    fn = true_ratings.sum() - tp
    if tp+fp == 0:
        prec = float('nan')
    else:
        prec = float(tp)/float(tp+fp)
    if tp+fn == 0:
        recall = float('nan')
    else:
        recall = float(tp)/float(tp+fn)
    if B != "NA":
        print("%.2f,%.2f,%.2f,%d,%d,%d,%.2f,%.2f" % (B, K1, conf, tp, fp, fn, prec, recall))
    else:
        print("NA,NA,%.2f,%d,%d,%d,%.2f,%.2f" % (conf, tp, fp, fn, prec, recall))