コード例 #1
0
		#########################################################################################
		# plot spectrum
		fig = plt.figure(fig_no); fig_no += 1

		# evaluate spectrum
		spectralnrm  = []
		rhs_spectrum = []
		x = dataset[:5][0]
		for m in model:
			if isinstance(m, theta_solver):
				spectrum_i = []
				m.ind_out = torch.arange(m.num_steps+1)
				odesol = m(x)
				m.ind_out = None
				for t in range(odesol.size(1)-1):
					spectrum_i.append( eigenvalues( lambda x: m.rhs(t,x), (1-m.theta.item())*odesol[:,t,...]+m.theta.item()*odesol[:,t+1,...]) )
					spectralnrm.append(np.amax(ex_setup.theta_stab(spectrum_i[-1][:,0]+1j*spectrum_i[-1][:,1],m.theta.item())))
				rhs_spectrum.append(np.concatenate(np.array(spectrum_i)))
				# plot eigenvalues
				xmax = ymax = 4
				plt.gca().clear()
				ex_setup.plot_stab(m.theta.item(), xlim=(-xmax,xmax), ylim=(-ymax,ymax))
				# print(rhs_spectrum[-1].shape, np.amax(np.abs(rhs_spectrum[-1])))
				plt.plot(rhs_spectrum[-1][:,0], rhs_spectrum[-1][:,1], 'o', markersize=4) #, markerfacecolor='none')
				plt.savefig(images_output+"_%s_spectrum.jpg"%(m.name), bbox_inches='tight', pad_inches=0.0, dpi=300)
			else:
				spectralnrm.append( spectralnorm(m,x).mean().item() )
			x = m(x)

		# save spectral norm of layers
		fname  = Path(paths['out_data'],('spectral_norm.txt'))
コード例 #2
0
ファイル: ex_stiff.py プロジェクト: vreshniak/ImplicitResNet
                   np.moveaxis(np.stack((t_learned_ode, y_learned_ode)), 0,
                               1).reshape((-1, 1001)).T,
                   delimiter=',')

        ###############################################
        fig = plt.figure(fig_no)
        fig_no += 1

        # evaluate spectrum
        spectrum_train = []
        for i in range(t_learned.shape[1] - 1):
            y = (1 - args.theta
                 ) * y_learned[:, i] + args.theta * y_learned[:, i + 1]
            y = torch.from_numpy(y).unsqueeze(1)
            t = torch.from_numpy(t_learned[:, i])
            spectrum_train.append(eigenvalues(lambda x: rhs_obj(t, x), y))
        spectrum_train = np.concatenate(spectrum_train)

        # plot spectrum
        # ex_setup.plot_stab(args.theta, xlim=(-25,-15), ylim=(-5,5))
        plt.plot(spectrum_train[:, 0],
                 spectrum_train[:, 1],
                 'bo',
                 markersize=4)
        plt.savefig(images_output + "_spectrum.pdf",
                    bbox_inches='tight',
                    pad_inches=0.0)

        ###############################################
        # plot vector field
コード例 #3
0
        for i in range(1, len(model) - 1):
            plt.cla()
            # evaluate trjectory
            model[i].ind_out = torch.arange(model[i].num_steps + 1)
            ytrain = model[i](out_train)
            out_train = ytrain0[:, -1, :]
            model[i].ind_out = None

            # evaluate spectrum
            spectrum_train = []
            xmax = ymax = 4
            for t in range(model[i].num_steps):
                y = (1 - model[i].theta
                     ) * ytrain[:, t, :] + model[i].theta * ytrain[:, t + 1, :]
                spectrum_train.append(
                    eigenvalues(lambda x: model[i].rhs(t, x), y))
                xmax = max(np.amax(np.abs(spectrum_train[-1][:, 0])), xmax)
                ymax = max(np.amax(np.abs(spectrum_train[-1][:, 1])), ymax)
            spectrum_train = np.concatenate(spectrum_train)

            # plot spectrum
            ex_setup.plot_stab(model[i].theta,
                               xlim=(-xmax, xmax),
                               ylim=(-ymax, ymax))
            plt.plot(spectrum_train[:, 0],
                     spectrum_train[:, 1],
                     'bo',
                     markersize=4)
            ex_setup.savefig(images_output + "_spectrum_%d" % (i),
                             format='jpg',
                             aspect='equal')
コード例 #4
0
        savefig(images_output + '_learned_ode_trajectories_%dperiods.pdf' %
                (periods),
                bbox_inches='tight',
                pad_inches=0.0)

        ###############################################
        fig = plt.figure(fig_no)
        fig_no += 1

        # evaluate correct spectrum along the true trajectories
        spectrum_exact = []
        for traj in y_ode[:, :1000, :]:
            spectrum_traj = []
            for i, t in enumerate(t_ode[:1000]):
                spectrum_traj.append(
                    eigenvalues(lambda x: correct_rhs(t, x),
                                torch.from_numpy(traj[i:i + 1, :])))
            spectrum_exact.append(np.concatenate(spectrum_traj))

        # plot correct spectrum
        # ex_setup.plot_stab(args.theta, xlim=(-2,2), ylim=(-2,2))
        for i in range(0, len(spectrum_exact), 2):
            plt.plot(spectrum_exact[i][:, 0],
                     spectrum_exact[i][:, 1],
                     'r.',
                     markersize=1)
            plt.plot(spectrum_exact[i + 1][:, 0],
                     spectrum_exact[i + 1][:, 1],
                     'b.',
                     markersize=1)
        plt.legend(['validation', 'training'], loc='upper right')
        # plt.gca().axis('off')
コード例 #5
0
ファイル: ex_1D.py プロジェクト: vreshniak/ImplicitResNet
        # plt.plot(xtrain, ytrain,'o')
        # plt.show()

        ###############################################
        fig = plt.figure(fig_no)
        fig_no += 1

        # evaluate spectrum
        spectrum_train = []
        spectrum_test = []
        xmax = ymax = 4
        for t in range(len(ode_output_train) - 1):
            y = (1 - args.theta
                 ) * ode_output_train[t] + args.theta * ode_output_train[t + 1]
            spectrum_train.append(
                eigenvalues(lambda x: rhs_obj(t, x), torch.from_numpy(y)))
            xmax = max(np.amax(np.abs(spectrum_train[-1][:, 0])), xmax)
            ymax = max(np.amax(np.abs(spectrum_train[-1][:, 1])), ymax)

            y = (1 - args.theta
                 ) * ode_output_test[t] + args.theta * ode_output_test[t + 1]
            spectrum_test.append(
                eigenvalues(lambda x: rhs_obj(t, x), torch.from_numpy(y)))
            xmax = max(np.amax(np.abs(spectrum_test[-1][:, 0])), xmax)
            ymax = max(np.amax(np.abs(spectrum_test[-1][:, 1])), ymax)
        spectrum_train = np.concatenate(spectrum_train)
        spectrum_test = np.concatenate(spectrum_test)

        # plot spectrum
        ex_setup.plot_stab(args.theta, xlim=(-xmax, xmax), ylim=(-ymax, ymax))
        plt.plot(spectrum_test[:, 0], spectrum_test[:, 1], 'bo',