def get_data_sqla(projections, sliders_dict, quantities, plot_info): """Query database using SQLAlchemy. Note: For efficiency, this uses the the sqlalchemy.sql interface which does not go via the (more convenient) ORM. """ from import_db import automap_table, engine from sqlalchemy.sql import select, and_ Table = automap_table(engine) selections = [] for label in projections: selections.append(getattr(Table, label)) filters = [] for k, v in sliders_dict.items(): if isinstance(v, RangeSlider): if not v.value == quantities[k]['range']: f = getattr(Table, k).between(v.value[0], v.value[1]) filters.append(f) elif isinstance(v, CheckboxButtonGroup): if not len(v.active) == len(v.labels): f = getattr(Table, k).in_([v.tags[i] for i in v.active]) filters.append(f) s = select(selections).where(and_(*filters)) #s = select(selections) results = engine.connect().execute(s).fetchall() nresults = len(results) if not results: plot_info.text = "No matching Complexes found." return data_empty elif nresults > max_points: results = results[:max_points] plot_info.text = "{} Complexes found.\nPlotting {}...".format( nresults, max_points) else: plot_info.text = "{} Complexes found.\nPlotting {}...".format( nresults, nresults) # x,y position x, y, clrs, names, filenames = zip(*results) x = list(map(float, x)) y = list(map(float, y)) if projections[2] == 'bond_type': #clrs = map(lambda clr: bondtypes.index(clr), clrs) clrs = list(map(str, clrs)) else: clrs = list(map(float, clrs)) return dict(x=x, y=y, filename=filenames, color=clrs, name=names)
def get_sqlite_data(name, plot_info): """Query the sqlite database""" from import_db import automap_table, engine from sqlalchemy.orm import sessionmaker # configure Session class with desired options Session = sessionmaker(bind=engine) session = Session() Table = automap_table(engine) query = session.query(Table).filter_by(name=str(name)) nresults = query.count() if nresults == 0: plot_info.text = "No matching COF found." return None return query.one()
def get_data_sqla(projections, sliders_dict, quantities, plot_info): """Query database using SQLAlchemy. Note: For efficiency, this uses the the sqlalchemy.sql interface which does not go via the (more convenient) ORM. """ from import_db import automap_table, engine from sqlalchemy.sql import select, and_ Table = automap_table(engine) selections = [] for label in projections: selections.append(getattr(Table, label)) filters = [] for k, v in sliders_dict.items(): if isinstance(v, RangeSlider): if not v.value == quantities[k]["range"]: f = getattr(Table, k).between(v.value[0], v.value[1]) filters.append(f) elif isinstance(v, CheckboxButtonGroup): if not len(v.active) == len(v.labels): f = getattr(Table, k).in_([v.tags[i] for i in v.active]) filters.append(f) s = select(selections).where(and_(*filters)) results = engine.connect().execute(s).fetchall() nresults = len(results) if not results: plot_info.text = "No matching structure found." return data_empty elif nresults > max_points: results = results[:max_points] plot_info.text = "{} frameworks found.\nPlotting {}...".format( nresults, max_points) else: plot_info.text = "{} frameworks found.\nPlotting {}...".format( nresults, nresults) # x,y position x, y, clrs, sampled, names, filenames = zip(*results) x = list(map(float, x)) y = list(map(float, y)) sampled_ = [20 if s == "sampled" else 10 for s in sampled] lw = [2 if s == "sampled" else 0.1 for s in sampled] if projections[2] == "group": # clrs = map(lambda clr: bondtypes.index(clr), clrs) clrs = list(clrs) # df = pd.DataFrame({ # 'x': x, # 'y': y, # 'filename': filenames, # 'name': names, # 'color': clrs # }) # # my_own_order = ['COFs', 'MOFs', 'zeolites', 'sampled'] # my_own_order_dict = {key: i for i, key in enumerate(my_own_order)} # inv_my_own_order_dict = {v: k for k, v in my_own_order_dict.items()} # df['color_mapped'] = df['color'].map(my_own_order_dict) # df.sort_values(by=['color_mapped'], inplace=True) # x = df['x'].astype(float).to_list() # y = df['y'].astype(float).to_list() # filenames = df['filename'].to_list() # clrs = df['color'].to_list() # names = df['name'].to_list() else: clrs = list(map(float, clrs)) return dict(x=x, y=y, filename=filenames, color=clrs, sampled=sampled_, name=names, lw=lw)
def get_data_sqla(projections, sliders_dict, quantities, plot_info): """Query database using SQLAlchemy. Note: For efficiency, this uses the the sqlalchemy.sql interface which does not go via the (more convenient) ORM. """ from import_db import automap_table, engine from sqlalchemy.sql import select, and_ Table = automap_table(engine, table_name='mofs') selections = [] for label in projections: selections.append(getattr(Table, label)) filters = [] for k, v in sliders_dict.items(): if isinstance(v, RangeSlider): if not v.value == quantities[k]['range']: f = getattr(Table, k).between(v.value[0], v.value[1]) filters.append(f) elif isinstance(v, CheckboxButtonGroup): if not len(v.active) == len(v.labels): f = getattr(Table, k).in_([v.tags[i] for i in v.active]) filters.append(f) # Leopold: Some structures have void_fraction = -1 # Pete: Likely, some structures do not have measurable pores using zeo++. # This doesn't necessarily mean 0 uptake however, as zeo++ uses hard # spheres to measure pore space, while a lennard-jones function governs the # adsorption measured by GCMC. # The selectivity ratio would be high in these cases, as even slight CO2 # adsorption but significantly less N2 will yield a high selectivity. I # think I filtered these cases out of the plot, as they would be # uninteresting from a materials design point of view. filters.append(Table.void_fraction >= 0) s = select(selections).where(and_(*filters)) results = engine.connect().execute(s).fetchall() nresults = len(results) if not results: plot_info.text = "No matching MOFs found." return data_empty elif nresults > max_points: results = results[:max_points] plot_info.text = "{} MOFs found.\nPlotting {}...".format( nresults, max_points) else: plot_info.text = "{} MOFs found.\nPlotting {}...".format( nresults, nresults) # x,y position x, y, clrs, names, filenames = zip(*results) x = list(map(float, x)) y = list(map(float, y)) if projections[2] == 'bond_type': #clrs = map(lambda clr: bondtypes.index(clr), clrs) clrs = list(map(str, clrs)) else: clrs = list(map(float, clrs)) return dict(x=x, y=y, filename=filenames, color=clrs, name=names)