def compare(comparator_type, sample_url): from improc.features.comparator import ChiSquaredComparator, \ EuclideanComparator, ManhattanComparator, ChebyshevComparator, \ CosineComparator, HammingComparator import improc.features.query as feature_query if comparator_type == "euclidean": comparator = EuclideanComparator() elif comparator_type == "manhattan": comparator = ManhattanComparator() elif comparator_type == "chisquared": comparator = ChiSquaredComparator() elif comparator_type == "hamming": comparator = HammingComparator() elif comparator_type == "chebsy": comparator = ChebyshevComparator() elif comparator_type == "cosine": comparator = CosineComparator() else: raise Exception(comparator_type) result_harlick = feature_query.do(sample_harlick, items["harlick"], comparator) detail_result(comparator_type, "harlick", sample_url, result_harlick) result_rgb_histogram = feature_query.do(sample_rgb_histogram, items["rgb_histogram"], comparator) detail_result(comparator_type, "rgb_histogram", sample_url, result_rgb_histogram) result_zernike = feature_query.do(sample_zernike, items["zernike"], comparator) detail_result(comparator_type, "zernite", sample_url, result_zernike)
def compare(comparator_type, sample_url): from improc.features.comparator import ChiSquaredComparator, \ EuclideanComparator, ManhattanComparator, ChebyshevComparator, \ CosineComparator, HammingComparator import improc.features.query as feature_query if comparator_type == "euclidean": comparator = EuclideanComparator() elif comparator_type == "manhattan": comparator = ManhattanComparator() elif comparator_type == "chisquared": comparator = ChiSquaredComparator() elif comparator_type == "hamming": comparator = HammingComparator() elif comparator_type == "chebsy": comparator = ChebyshevComparator() elif comparator_type == "cosine": comparator = CosineComparator() else: raise Exception(comparator_type) result_harlick = feature_query.do( sample_harlick, items["harlick"], comparator) detail_result(comparator_type, "harlick", sample_url, result_harlick) result_rgb_histogram = feature_query.do( sample_rgb_histogram, items["rgb_histogram"], comparator) detail_result(comparator_type, "rgb_histogram", sample_url, result_rgb_histogram) result_zernike = feature_query.do( sample_zernike, items["zernike"], comparator) detail_result(comparator_type, "zernite", sample_url, result_zernike)
def test_dataset(key, total): descriptor_info = load_dataset("datasets/%s" % key, samples_info[0]) for i, x in enumerate(samples_info): sample_image = cv2.imread(x["sample_name"]) image_key = "%s_%s" % (key, x["sample_name"][:-10]) methodToCall = getattr(descriptor_definitions, key) descriptor = methodToCall() plt.subplot(len(dd.items()), len(samples_info), i + total + 1), plt.imshow(descriptor.do_preprocess(sample_image), 'gray') # plt.title("%s_%s" % (key[0], image_key)) sample_description = descriptor.describe(sample_image) res = do(sample_description, descriptor_info["data"], EuclideanComparator()) process_results(res, x, key, descriptor) return i + total
def test_dataset(key, total): descriptor_info = load_dataset("datasets/%s" % key, samples_info[0]) for i, x in enumerate(samples_info): sample_image = cv2.imread(x["sample_name"]) image_key = "%s_%s" % (key, x["sample_name"][:-10]) methodToCall = getattr(descriptor_definitions, key) descriptor = methodToCall() plt.subplot(len(dd.items()), len(samples_info), i + total + 1), plt.imshow( descriptor.do_preprocess(sample_image), 'gray') # plt.title("%s_%s" % (key[0], image_key)) sample_description = descriptor.describe(sample_image) res = do(sample_description, descriptor_info["data"], EuclideanComparator()) process_results(res, x, key, descriptor) return i + total
for doc in docs: for i in doc["detail"]["images"]: path = "/Users/rdefeo/Development/getter/detail/data/images/%s" % i["path"] key = "%s_%s" % (str(doc["_id"]["_id"]), str(i["_id"])) img = mh.imread(path) # img = cv2.resize(img, size) items[key] = descriptor.describe(img) name = "536f5a1ea26d15820c9211cb.jpg" base_path = "/Users/rdefeo/Development/getter/detail/data/images/%s" % name print base_path base = mh.imread(base_path) # base = cv2.resize(base, size) sample = descriptor.describe(base) result = feature_query.do(sample, items, ChiSquaredComparator()) for x in result["results"][:10]: print x # f = mh.imread('test_data/1.jpg', as_grey=True)#mh.demos.load('luispedro', as_grey=True) # img = mahotas.imread('test_data/1.jpg') # d = mahotas.features.haralick(img).mean(0) # # # # import numpy as np # # import mahotas # # import pylab as p # #
for i in doc["detail"]["images"]: path = "/Users/rdefeo/Development/getter/detail/data/images/%s" % i[ "path"] key = "%s_%s" % (str(doc["_id"]["_id"]), str(i["_id"])) img = mh.imread(path) # img = cv2.resize(img, size) items[key] = descriptor.describe(img) name = "536f5a1ea26d15820c9211cb.jpg" base_path = "/Users/rdefeo/Development/getter/detail/data/images/%s" % name print base_path base = mh.imread(base_path) # base = cv2.resize(base, size) sample = descriptor.describe(base) result = feature_query.do(sample, items, ChiSquaredComparator()) for x in result["results"][:10]: print x # f = mh.imread('test_data/1.jpg', as_grey=True)#mh.demos.load('luispedro', as_grey=True) # img = mahotas.imread('test_data/1.jpg') # d = mahotas.features.haralick(img).mean(0) # # # # import numpy as np # # import mahotas # # import pylab as p # #