コード例 #1
0
    def test_not_in_vicinity(self):
        """Test for no change if the matching point is too far away."""
        # We need larger arrays for this.
        # Define 5 x 5 arrays with output sea point at [1, 1] and input sea
        # point at [4, 4]. The alternative value of 0.5 at [4, 4] should not
        # be selected with a small vicinity_radius.
        self.plugin = RegridLandSea(vicinity_radius=2200.)
        cube = squeeze(
            set_up_cube(num_grid_points=5,
                        zero_point_indices=((0, 0, 1, 1), )))
        self.plugin.output_land = cube.copy()
        self.plugin.nearest_cube = cube.copy()
        self.plugin.nearest_cube.data[4, 4] = 0.5
        self.plugin.output_cube = self.plugin.nearest_cube.copy()
        self.plugin.input_land = squeeze(
            set_up_cube(num_grid_points=5,
                        zero_point_indices=((0, 0, 4, 4), )))

        output_cube = self.plugin.output_cube.copy()
        self.plugin.correct_where_input_true(0)
        self.assertArrayEqual(output_cube.data, self.plugin.output_cube.data)
コード例 #2
0
 def setUp(self):
     """Create a class-object containing the necessary cubes.
     All cubes are on the target grid. Here this is defined as a 3x3 grid.
     The grid contains ones everywhere except the centre point (a zero).
     The output_cube has a value of 0.5 at [0, 1].
     The move_sea_point cube has the zero value at [0, 1] instead of [1, 1],
     this allows it to be used in place of input_land to trigger the
     expected behaviour in the function.
     """
     self.plugin = RegridLandSea(vicinity_radius=2200.)
     cube = squeeze(
         set_up_cube(num_grid_points=3,
                     zero_point_indices=((0, 0, 1, 1), )))
     self.plugin.input_land = cube.copy()
     self.plugin.output_land = cube.copy()
     self.plugin.nearest_cube = cube.copy()
     self.plugin.nearest_cube.data[0, 1] = 0.5
     self.plugin.output_cube = self.plugin.nearest_cube.copy()
     self.move_sea_point = squeeze(
         set_up_cube(num_grid_points=3,
                     zero_point_indices=((0, 0, 0, 1), )))
コード例 #3
0
    def setUp(self):
        """Create a class-object containing the necessary cubes.
        All cubes are on the target grid. Here this is defined as a 5x5 grid.
        The cubes have values of one everywhere except:
        input_land: zeroes (sea points) at [0, 1], [4, 4]
        output_land: zeroes (sea points) at [0, 0], [1, 1]
        input_cube: 0. at [1, 1]; 0.5 at [0, 1]; 0.1 at [4, 4]
        These should trigger all the behavior we expect.
        """
        self.plugin = RegridLandSea(vicinity_radius=2200.)

        self.output_land = squeeze(
            set_up_cube(num_grid_points=5,
                        zero_point_indices=((0, 0, 1, 1), (0, 0, 0, 0))))

        self.cube = squeeze(
            set_up_cube(num_grid_points=5,
                        zero_point_indices=((0, 0, 1, 1), )))
        self.cube.data[0, 1] = 0.5
        self.cube.data[4, 4] = 0.1

        self.input_land = squeeze(
            set_up_cube(num_grid_points=5,
                        zero_point_indices=((0, 0, 0, 1), (0, 0, 4, 4))))

        # Lat-lon coords for reprojection
        # These coords result in a 1:1 regridding with the above cubes.
        x_coord = DimCoord(np.linspace(-3.281, -3.153, 5),
                           standard_name='longitude',
                           units='degrees',
                           coord_system=ELLIPSOID)
        y_coord = DimCoord(np.linspace(54.896, 54.971, 5),
                           standard_name='latitude',
                           units='degrees',
                           coord_system=ELLIPSOID)
        self.input_land_ll = Cube(self.input_land.data,
                                  long_name='land_sea_mask',
                                  units='1',
                                  dim_coords_and_dims=[(y_coord, 0),
                                                       (x_coord, 1)])
コード例 #4
0
 def test_basic(self):
     """Test that instantiating the class results in an object with
     expected variables."""
     expected_members = {
         'nearest_cube': None,
         'input_land': None,
         'output_land': None,
         'output_cube': None
     }
     result = RegridLandSea()
     members = {
         attr: getattr(result, attr)
         for attr in dir(result) if not callable(getattr(result, attr))
         and not attr.startswith("__")
     }
     regridder = members.pop('regridder')
     vicinity = members.pop('vicinity')
     self.assertDictEqual(members, expected_members)
     self.assertTrue(isinstance(regridder, iris.analysis.Nearest))
     self.assertTrue(isinstance(vicinity, OccurrenceWithinVicinity))
コード例 #5
0
def process(output_data, target_grid=None, source_landsea=None,
            metadata_dict=None, regrid_mode='bilinear',
            extrapolation_mode='nanmask', landmask_vicinity=25000,
            fix_float64=False):
    """Standardises a cube by one or more of regridding, updating meta-data etc

    Standardise a source cube. Available options are regridding
    (bi-linear or nearest-neighbour, optionally with land-mask
    awareness), updating meta-data and converting float64 data to
    float32. A check for float64 data compliance can be made by only
    specifying a source cube with no other arguments.

    Args:
        output_data (iris.cube.Cube):
            Output cube. If the only argument, then it is checked bor float64
            data.
        target_grid (iris.cube.Cube):
            If specified, then regridding of the source against the target
            grid is enabled. If also using landmask-aware regridding then this
            must be land_binary_mask data.
            Default is None.
        source_landsea (iris.cube.Cube):
            A cube describing the land_binary_mask on the source-grid if
            coastline-aware regridding is required.
            Default is None.
        metadata_dict (dict):
            Dictionary containing required changes that will be applied to
            the metadata.
            Default is None.
        regrid_mode (str):
            Selects which regridding techniques to use. Default uses
            iris.analysis.Linear(); "nearest" uses Nearest() (Use for less
            continuous fields, e.g precipitation.); "nearest-with-mask"
            ensures that target data are sources from points with the same
            mask value (Use for coast-line-dependant variables
            like temperature).
        extrapolation_mode (str):
            Mode to use for extrapolating data into regions beyond the limits
            of the source_data domain. Refer to online documentation for
            iris.analysis.
            Modes are -
            extrapolate -The extrapolation points will take their values
            from the nearest source point.
            nan - The extrapolation points will be set to NaN.
            error - A ValueError exception will be raised notifying an attempt
            to extrapolate.
            mask - The extrapolation points will always be masked, even if
            the source data is not a MaskedArray.
            nanmask - If the source data is a MaskedArray the extrapolation
            points will be masked. Otherwise they will be set to NaN.
            Defaults is 'nanmask'.
        landmask_vicinity (float):
            Radius of vicinity to search for a coastline, in metres.
            Defaults is 25000 m
        fix_float64 (bool):
            If True, checks and fixes cube for float64 data. Without this
            option an exception will be raised if float64 data is found but no
            fix applied.
            Default is False.

    Returns:
        output_data (iris.cube.Cube):
            Processed cube.

    Raises:
        ValueError:
            If source landsea is supplied but regrid mode not
            nearest-with-mask.
        ValueError:
            If source landsea is supplied but not target grid.
        ValueError:
            If regrid_mode is "nearest-with-mask" but no landmask cube has
            been provided.

    Warns:
        warning:
            If the 'source_landsea' did not have a cube named land_binary_mask.
        warning:
            If the 'target_grid' did not have a cube named land_binary_mask.

    """
    if (source_landsea and
            "nearest-with-mask" not in regrid_mode):
        msg = ("Land-mask file supplied without appropriate regrid_mode. "
               "Use --regrid_mode=nearest-with-mask.")
        raise ValueError(msg)

    if source_landsea and not target_grid:
        msg = ("Cannot specify input_landmask_filepath without "
               "target_grid_filepath")
        raise ValueError(msg)
    # Process
    # Re-grid with options:
    check_cube_not_float64(output_data, fix=fix_float64)
    # if a target grid file has been specified, then regrid optionally
    # applying float64 data check, metadata change, Iris nearest and
    # extrapolation mode as required.
    if target_grid:
        regridder = iris.analysis.Linear(
            extrapolation_mode=extrapolation_mode)

        if regrid_mode in ["nearest", "nearest-with-mask"]:
            regridder = iris.analysis.Nearest(
                extrapolation_mode=extrapolation_mode)

        output_data = output_data.regrid(target_grid, regridder)

        if regrid_mode in ["nearest-with-mask"]:
            if not source_landsea:
                msg = ("An argument has been specified that requires an input "
                       "landmask cube but none has been provided")
                raise ValueError(msg)

            if "land_binary_mask" not in source_landsea.name():
                msg = ("Expected land_binary_mask in input_landmask cube "
                       "but found {}".format(repr(source_landsea)))
                warnings.warn(msg)

            if "land_binary_mask" not in target_grid.name():
                msg = ("Expected land_binary_mask in target_grid cube "
                       "but found {}".format(repr(target_grid)))
                warnings.warn(msg)

            output_data = RegridLandSea(
                vicinity_radius=landmask_vicinity).process(
                output_data, source_landsea, target_grid)

        target_grid_attributes = (
            {k: v for (k, v) in target_grid.attributes.items()
             if 'mosg__' in k or 'institution' in k})
        amend_metadata(output_data, attributes=target_grid_attributes)
    # Change metadata only option:
    # if output file path and json metadata file specified,
    # change the metadata
    if metadata_dict:
        output_data = amend_metadata(output_data, **metadata_dict)

    check_cube_not_float64(output_data, fix=fix_float64)

    return output_data
コード例 #6
0
def main(argv=None):
    """
    Standardise a source cube. Available options are regridding (bilinear or
    nearest-neighbour, optionally with land-mask awareness), updating meta-data
    and converting float64 data to float32. A check for float64 data compliance
    can be made by only specify a source NetCDF file with no other arguments.
    """
    parser = ArgParser(
        description='Standardise a source data cube. Three main options are '
        'available; fixing float64 data, regridding and updating '
        'metadata. If regridding then additional options are '
        'available to use bilinear or nearest-neighbour '
        '(optionally with land-mask awareness) modes. If only a '
        'source file is specified with no other arguments, then '
        'an exception will be raised if float64 data are found on '
        'the source.')

    parser.add_argument('source_data_filepath',
                        metavar='SOURCE_DATA',
                        help='A cube of data that is to be standardised and '
                        'optionally fixed for float64 data, regridded '
                        'and meta data changed')

    parser.add_argument("--output_filepath",
                        metavar="OUTPUT_FILE",
                        default=None,
                        help="The output path for the processed NetCDF. "
                        "If only a source file is specified and no "
                        "output file, then the source will be checked"
                        "for float64 data.")

    regrid_group = parser.add_argument_group("Regridding options")
    regrid_group.add_argument(
        "--target_grid_filepath",
        metavar="TARGET_GRID",
        help=('If specified then regridding of the source '
              'against the target grid is enabled. If also using '
              'landmask-aware regridding, then this must be land_binary_mask '
              'data.'))

    regrid_group.add_argument(
        "--regrid_mode",
        default='bilinear',
        choices=['bilinear', 'nearest', 'nearest-with-mask'],
        help=('Selects which regridding technique to use. Default uses '
              'iris.analysis.Linear(); "nearest" uses Nearest() (Use for less '
              'continuous fields, e.g. precipitation.); "nearest-with-mask" '
              'ensures that target data are sourced from points with the same '
              'mask value (Use for coast-line-dependent variables like '
              'temperature).'))

    regrid_group.add_argument(
        "--extrapolation_mode",
        default='nanmask',
        help='Mode to use for extrapolating data into regions '
        'beyond the limits of the source_data domain. '
        'Refer to online documentation for iris.analysis. '
        'Modes are: '
        'extrapolate - The extrapolation points will '
        'take their value from the nearest source point. '
        'nan - The extrapolation points will be be '
        'set to NaN. '
        'error - A ValueError exception will be raised, '
        'notifying an attempt to extrapolate. '
        'mask  - The extrapolation points will always be '
        'masked, even if the source data is not a '
        'MaskedArray. '
        'nanmask - If the source data is a MaskedArray '
        'the extrapolation points will be masked. '
        'Otherwise they will be set to NaN. '
        'Defaults to nanmask.')

    regrid_group.add_argument(
        "--input_landmask_filepath",
        metavar="INPUT_LANDMASK_FILE",
        help=("A path to a NetCDF file describing the land_binary_mask on "
              "the source-grid if coastline-aware regridding is required."))

    regrid_group.add_argument(
        "--landmask_vicinity",
        metavar="LANDMASK_VICINITY",
        default=25000.,
        type=float,
        help=("Radius of vicinity to search for a coastline, in metres. "
              "Default value; 25000 m"))

    parser.add_argument("--fix_float64",
                        action='store_true',
                        default=False,
                        help="Check and fix cube for float64 data. Without "
                        "this option an exception will be raised if "
                        "float64 data is found but no fix applied.")

    parser.add_argument("--json_file",
                        metavar="JSON_FILE",
                        default=None,
                        help='Filename for the json file containing required '
                        'changes that will be applied '
                        'to the metadata. Defaults to None.')

    args = parser.parse_args(args=argv)

    if args.target_grid_filepath or args.json_file or args.fix_float64:
        if not args.output_filepath:
            msg = ("An argument has been specified that requires an output "
                   "filepath but none has been provided")
            raise ValueError(msg)

    if (args.input_landmask_filepath
            and "nearest-with-mask" not in args.regrid_mode):
        msg = ("Land-mask file supplied without appropriate regrid_mode. "
               "Use --regrid_mode=nearest-with-mask.")
        raise ValueError(msg)

    if args.input_landmask_filepath and not args.target_grid_filepath:
        msg = ("Cannot specify input_landmask_filepath without "
               "target_grid_filepath")
        raise ValueError(msg)

    # source file data path is a mandatory argument
    output_data = load_cube(args.source_data_filepath)

    if args.fix_float64:
        check_cube_not_float64(output_data, fix=True)
    else:
        check_cube_not_float64(output_data, fix=False)

    # Re-grid with options:
    # if a target grid file has been specified, then regrid optionally
    # applying float64 data check, metadata change, Iris nearest and
    # extrapolation mode as required.

    if args.target_grid_filepath:

        target_grid = load_cube(args.target_grid_filepath)

        regridder = iris.analysis.Linear(
            extrapolation_mode=args.extrapolation_mode)

        if args.regrid_mode in ["nearest", "nearest-with-mask"]:
            regridder = iris.analysis.Nearest(
                extrapolation_mode=args.extrapolation_mode)

        output_data = output_data.regrid(target_grid, regridder)

        if args.regrid_mode in ["nearest-with-mask"]:
            if not args.input_landmask_filepath:
                msg = ("An argument has been specified that requires an input "
                       "landmask filepath but none has been provided")
                raise ValueError(msg)

            source_landsea = load_cube(args.input_landmask_filepath)
            if "land_binary_mask" not in source_landsea.name():
                msg = ("Expected land_binary_mask in input_landmask_filepath "
                       "but found {}".format(repr(source_landsea)))
                warnings.warn(msg)
            if "land_binary_mask" not in target_grid.name():
                msg = ("Expected land_binary_mask in target_grid_filepath "
                       "but found {}".format(repr(target_grid)))
                warnings.warn(msg)
            output_data = RegridLandSea(
                vicinity_radius=args.landmask_vicinity).process(
                    output_data, source_landsea, target_grid)

        target_grid_attributes = ({
            k: v
            for (k, v) in target_grid.attributes.items()
            if 'mosg__' in k or 'institution' in k
        })
        amend_metadata(output_data, attributes=target_grid_attributes)

    # Change metadata only option:
    # if output file path and json metadata file specified,
    # change the metadata
    if args.json_file:
        with open(args.json_file, 'r') as input_file:
            metadata_dict = json.load(input_file)
        output_data = amend_metadata(output_data, **metadata_dict)

    # Check and fix for float64 data only option:
    if args.fix_float64:
        check_cube_not_float64(output_data, fix=True)

    if args.output_filepath:
        save_netcdf(output_data, args.output_filepath)
コード例 #7
0
 def test_vicinity_arg(self):
     """Test with vicinity_radius argument."""
     result = RegridLandSea(vicinity_radius=30000.)
     vicinity = getattr(result, 'vicinity')
     self.assertTrue(isinstance(vicinity, OccurrenceWithinVicinity))
     self.assertEqual(vicinity.distance, 30000.)
コード例 #8
0
 def test_extrap_arg_error(self):
     """Test with invalid extrapolation_mode argument."""
     msg = "Extrapolation mode 'not_valid' not supported"
     with self.assertRaisesRegex(ValueError, msg):
         RegridLandSea(extrapolation_mode="not_valid")
コード例 #9
0
 def test_extrap_arg(self):
     """Test with extrapolation_mode argument."""
     result = RegridLandSea(extrapolation_mode="mask")
     regridder = getattr(result, 'regridder')
     self.assertTrue(isinstance(regridder, iris.analysis.Nearest))
コード例 #10
0
class Test_process(IrisTest):
    """Tests the process method of the RegridLandSea class."""
    def setUp(self):
        """Create a class-object containing the necessary cubes.
        All cubes are on the target grid. Here this is defined as a 5x5 grid.
        The cubes have values of one everywhere except:
        input_land: zeroes (sea points) at [0, 1], [4, 4]
        output_land: zeroes (sea points) at [0, 0], [1, 1]
        input_cube: 0. at [1, 1]; 0.5 at [0, 1]; 0.1 at [4, 4]
        These should trigger all the behavior we expect.
        """
        self.plugin = RegridLandSea(vicinity_radius=2200.)

        self.output_land = squeeze(
            set_up_cube(num_grid_points=5,
                        zero_point_indices=((0, 0, 1, 1), (0, 0, 0, 0))))

        self.cube = squeeze(
            set_up_cube(num_grid_points=5,
                        zero_point_indices=((0, 0, 1, 1), )))
        self.cube.data[0, 1] = 0.5
        self.cube.data[4, 4] = 0.1

        self.input_land = squeeze(
            set_up_cube(num_grid_points=5,
                        zero_point_indices=((0, 0, 0, 1), (0, 0, 4, 4))))

        # Lat-lon coords for reprojection
        # These coords result in a 1:1 regridding with the above cubes.
        x_coord = DimCoord(np.linspace(-3.281, -3.153, 5),
                           standard_name='longitude',
                           units='degrees',
                           coord_system=ELLIPSOID)
        y_coord = DimCoord(np.linspace(54.896, 54.971, 5),
                           standard_name='latitude',
                           units='degrees',
                           coord_system=ELLIPSOID)
        self.input_land_ll = Cube(self.input_land.data,
                                  long_name='land_sea_mask',
                                  units='1',
                                  dim_coords_and_dims=[(y_coord, 0),
                                                       (x_coord, 1)])

    # The warning messages are internal to the iris.analysis module v2.2.0.
    @ManageWarnings(ignored_messages=["Using a non-tuple sequence for "],
                    warning_types=[FutureWarning])
    def test_basic(self):
        """Test that the expected changes occur and meta-data are unchanged."""
        expected = self.cube.data.copy()
        # Output sea-point populated with data from input sea-point:
        expected[0, 0] = 0.5
        # Output sea-point populated with data from input sea-point:
        expected[1, 1] = 0.5
        # Output land-point populated with data from input land-point:
        expected[0, 1] = 1.
        # Output land-point populated with data from input sea-point due to
        # vicinity-constraint:
        expected[4, 4] = 1.
        result = self.plugin.process(self.cube, self.input_land,
                                     self.output_land)
        self.assertIsInstance(result, Cube)
        self.assertArrayEqual(result.data, expected)
        self.assertDictEqual(result.attributes, self.cube.attributes)
        self.assertEqual(result.name(), self.cube.name())

    @ManageWarnings(ignored_messages=["Using a non-tuple sequence for "],
                    warning_types=[FutureWarning])
    def test_with_regridding(self):
        """Test when input grid is on a different projection."""
        self.input_land = self.input_land_ll
        expected = self.cube.data.copy()
        # Output sea-point populated with data from input sea-point:
        expected[0, 0] = 0.5
        # Output sea-point populated with data from input sea-point:
        expected[1, 1] = 0.5
        # Output land-point populated with data from input land-point:
        expected[0, 1] = 1.
        # Output land-point populated with data from input sea-point due to
        # vicinity-constraint:
        expected[4, 4] = 1.
        result = self.plugin.process(self.cube, self.input_land,
                                     self.output_land)
        self.assertIsInstance(result, Cube)
        self.assertArrayEqual(result.data, expected)
        self.assertDictEqual(result.attributes, self.cube.attributes)
        self.assertEqual(result.name(), self.cube.name())

    @ManageWarnings(ignored_messages=["Using a non-tuple sequence for "],
                    warning_types=[FutureWarning])
    def test_multi_realization(self):
        """Test that the expected changes occur and meta-data are unchanged
        when handling a multi-realization cube."""
        cube = self.cube.copy()
        cube.coord('realization').points = [1]
        cubes = iris.cube.CubeList([self.cube, cube])
        cube = cubes.merge_cube()

        expected = cube.data.copy()

        # Output sea-point populated with data from input sea-point:
        expected[:, 0, 0] = 0.5
        # Output sea-point populated with data from input sea-point:
        expected[:, 1, 1] = 0.5
        # Output land-point populated with data from input land-point:
        expected[:, 0, 1] = 1.
        # Output land-point populated with data from input sea-point due to
        # vicinity-constraint:
        expected[:, 4, 4] = 1.
        result = self.plugin.process(cube, self.input_land, self.output_land)
        self.assertIsInstance(result, Cube)
        self.assertArrayEqual(result.data, expected)
        self.assertDictEqual(result.attributes, self.cube.attributes)
        self.assertEqual(result.name(), self.cube.name())

    def test_raises_gridding_error(self):
        """Test error raised when cube and output grids don't match."""
        self.cube = self.input_land_ll
        msg = "X and Y coordinates do not match for cubes"
        with self.assertRaisesRegex(ValueError, msg):
            self.plugin.process(self.cube, self.input_land, self.output_land)
コード例 #11
0
class Test_correct_where_input_true(IrisTest):
    """Tests the correct_where_input_true method of the RegridLandSea class."""
    def setUp(self):
        """Create a class-object containing the necessary cubes.
        All cubes are on the target grid. Here this is defined as a 3x3 grid.
        The grid contains ones everywhere except the centre point (a zero).
        The output_cube has a value of 0.5 at [0, 1].
        The move_sea_point cube has the zero value at [0, 1] instead of [1, 1],
        this allows it to be used in place of input_land to trigger the
        expected behaviour in the function.
        """
        self.plugin = RegridLandSea(vicinity_radius=2200.)
        cube = squeeze(
            set_up_cube(num_grid_points=3,
                        zero_point_indices=((0, 0, 1, 1), )))
        self.plugin.input_land = cube.copy()
        self.plugin.output_land = cube.copy()
        self.plugin.nearest_cube = cube.copy()
        self.plugin.nearest_cube.data[0, 1] = 0.5
        self.plugin.output_cube = self.plugin.nearest_cube.copy()
        self.move_sea_point = squeeze(
            set_up_cube(num_grid_points=3,
                        zero_point_indices=((0, 0, 0, 1), )))

    def test_basic_sea(self):
        """Test that nothing changes with argument zero (sea)."""
        input_land = self.plugin.input_land.copy()
        output_land = self.plugin.output_land.copy()
        output_cube = self.plugin.output_cube.copy()
        self.plugin.correct_where_input_true(0)
        self.assertArrayEqual(input_land.data, self.plugin.input_land.data)
        self.assertArrayEqual(output_land.data, self.plugin.output_land.data)
        self.assertArrayEqual(output_cube.data, self.plugin.output_cube.data)

    def test_basic_land(self):
        """Test that nothing changes with argument one (land)."""
        input_land = self.plugin.input_land.copy()
        output_land = self.plugin.output_land.copy()
        output_cube = self.plugin.output_cube.copy()
        self.plugin.correct_where_input_true(1)
        self.assertArrayEqual(input_land.data, self.plugin.input_land.data)
        self.assertArrayEqual(output_land.data, self.plugin.output_land.data)
        self.assertArrayEqual(output_cube.data, self.plugin.output_cube.data)

    def test_work_sea(self):
        """Test for expected change with argument zero (sea)."""
        self.plugin.input_land = self.move_sea_point
        output_cube = self.plugin.output_cube.copy()
        # The output sea point should have been changed to the value from the
        # input sea point in the same grid.
        output_cube.data[1, 1] = 0.5
        self.plugin.correct_where_input_true(0)
        self.assertArrayEqual(output_cube.data, self.plugin.output_cube.data)

    def test_work_land(self):
        """Test for expected change with argument one (land)."""
        self.plugin.input_land = self.move_sea_point
        output_cube = self.plugin.output_cube.copy()
        # The input sea point should have been changed to the value from an
        # input land point in the same grid.
        output_cube.data[0, 1] = 1.0
        self.plugin.correct_where_input_true(1)
        self.assertArrayEqual(output_cube.data, self.plugin.output_cube.data)

    def test_work_sealand_eq_landsea(self):
        """Test result is independent of order of sea/land handling."""
        self.plugin.input_land = self.move_sea_point.copy()
        reset_cube = self.plugin.output_cube.copy()
        self.plugin.correct_where_input_true(0)
        self.plugin.correct_where_input_true(1)
        attempt_01 = self.plugin.output_cube.data.copy()

        self.plugin.output_cube = reset_cube
        self.plugin.correct_where_input_true(1)
        self.plugin.correct_where_input_true(0)
        attempt_10 = self.plugin.output_cube.data.copy()

        self.assertArrayEqual(attempt_01, attempt_10)

    def test_not_in_vicinity(self):
        """Test for no change if the matching point is too far away."""
        # We need larger arrays for this.
        # Define 5 x 5 arrays with output sea point at [1, 1] and input sea
        # point at [4, 4]. The alternative value of 0.5 at [4, 4] should not
        # be selected with a small vicinity_radius.
        self.plugin = RegridLandSea(vicinity_radius=2200.)
        cube = squeeze(
            set_up_cube(num_grid_points=5,
                        zero_point_indices=((0, 0, 1, 1), )))
        self.plugin.output_land = cube.copy()
        self.plugin.nearest_cube = cube.copy()
        self.plugin.nearest_cube.data[4, 4] = 0.5
        self.plugin.output_cube = self.plugin.nearest_cube.copy()
        self.plugin.input_land = squeeze(
            set_up_cube(num_grid_points=5,
                        zero_point_indices=((0, 0, 4, 4), )))

        output_cube = self.plugin.output_cube.copy()
        self.plugin.correct_where_input_true(0)
        self.assertArrayEqual(output_cube.data, self.plugin.output_cube.data)

    def test_no_matching_points(self):
        """Test code runs and makes no changes if no sea points are present."""
        self.plugin.input_land.data = np.ones_like(self.plugin.input_land.data)
        self.plugin.output_land.data = np.ones_like(
            self.plugin.output_land.data)
        output_cube = self.plugin.output_cube.copy()
        self.plugin.correct_where_input_true(0)
        self.assertArrayEqual(output_cube.data, self.plugin.output_cube.data)

    def test_all_matching_points(self):
        """Test code runs and makes no changes if all land points are
        present."""
        self.plugin.input_land.data = np.ones_like(self.plugin.input_land.data)
        self.plugin.output_land.data = np.ones_like(
            self.plugin.output_land.data)
        output_cube = self.plugin.output_cube.copy()
        self.plugin.correct_where_input_true(1)
        self.assertArrayEqual(output_cube.data, self.plugin.output_cube.data)
コード例 #12
0
 def test_basic(self):
     """Test that the expected string is returned."""
     expected = ("<RegridLandSea: regridder: Nearest('nanmask'); "
                 "vicinity: <OccurrenceWithinVicinity: distance: 25000.0>>")
     result = repr(RegridLandSea())
     self.assertEqual(result, expected)