コード例 #1
0
ファイル: pipelines.py プロジェクト: sureshkumar0707/pyImSegm
def compute_color2d_superpixels_features(image,
                                         dict_features,
                                         sp_size=30,
                                         sp_regul=0.2,
                                         fts_norm=True):
    """ segment image into superpixels and estimate features per superpixel

    :param ndarray image: input RGB image
    :param int sp_size: initial size of a superpixel(meaning edge length)
    :param float sp_regul: regularisation in range(0;1) where "0" gives elastic
           and "1" nearly square segments
    :param {str: [str]} dict_features: list of features to be extracted
    :param bool fts_norm: weather normalise features
    :return [[int]], [[floats]]: superpixels and related of features
    """
    assert sp_regul > 0., 'slic. regularisation must be positive'
    logging.debug('run Superpixel clustering.')
    slic = seg_sp.segment_slic_img2d(image,
                                     sp_size=sp_size,
                                     rltv_compact=sp_regul)
    # plt.figure(), plt.imshow(slic)

    logging.debug('extract slic/superpixels features.')
    features, _ = seg_fts.compute_selected_features_img2d(
        image, slic, dict_features)
    logging.debug('list of features RAW: %s', repr(features.shape))
    features[np.isnan(features)] = 0

    if fts_norm:
        logging.debug('norm all features.')
        features, _ = seg_fts.norm_features(features)
        logging.debug('list of features NORM: %s', repr(features.shape))
    return slic, features
コード例 #2
0
def pipe_gray3d_slic_features_model_graphcut(
        image,
        nb_classes,
        dict_features,
        spacing=(12, 1, 1),
        sp_size=15,
        sp_regul=0.2,
        gc_regul=0.1,
):
    """ complete pipe-line for segmentation using superpixels, extracting features
    and graphCut segmentation

    :param ndarray image: input RGB image
    :param int sp_size: initial size of a superpixel(meaning edge lenght)
    :param float sp_regul: regularisation in range(0;1) where "0" gives elastic
           and "1" nearly square segments
    :param int nb_classes: number of classes to be segmented(indexing from 0)
    :param tuple(int,int,int) spacing:
    :param float gc_regul: regularisation for GC
    :return list(list(int)): segmentation matrix maping each pixel into a class

    >>> np.random.seed(0)
    >>> image = np.random.random((5, 125, 150)) / 2.
    >>> image[:, :, :75] += 0.5
    >>> segm = pipe_gray3d_slic_features_model_graphcut(image, 2, {'color': ['mean']})
    >>> segm.shape
    (5, 125, 150)
    """
    logging.info('PIPELINE Superpixels-Features-GraphCut')
    slic = segment_slic_img3d_gray(image,
                                   sp_size=sp_size,
                                   relative_compact=sp_regul,
                                   space=spacing)
    # plt.imshow(segments)
    logging.info('extract segments/superpixels features.')
    # f = features.computeColourMean(image, segments)
    features, _ = compute_selected_features_gray3d(image, slic, dict_features)
    # merge features together
    logging.debug('list of features RAW: %r', features.shape)
    features[np.isnan(features)] = 0

    logging.info('norm all features.')
    features, _ = norm_features(features)
    logging.debug('list of features NORM: %r', features.shape)

    model = estim_class_model(features, nb_classes)
    proba = model.predict_proba(features)
    logging.debug('list of probabilities: %r', proba.shape)

    # resultGraph = graphCut.segment_graph_cut_int_vals(segments, prob, gcReg)
    graph_labels = segment_graph_cut_general(slic, proba, image, features,
                                             gc_regul)

    return graph_labels[slic]